Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/76424
Título: | Bimodal microwave and ultrasound phantoms for non-invasive clinical imaging | Autores/as: | Villa, Enrique Arteaga-Marrero, Natalia González-Fernández, Javier Ruiz Alzola, Juan |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Bimodal phantoms Medical microwave Ultrasound applications Dielectric properties |
Fecha de publicación: | 2020 | Publicación seriada: | Scientific Reports | Resumen: | A precise and thorough methodology is presented for the design and fabrication of bimodal phantoms to be used in medical microwave and ultrasound applications. Dielectric and acoustic properties of human soft tissues were simultaneously mimicked. The phantoms were fabricated using polyvinyl alcohol cryogel (PVA-C) as gelling agent at a 10% concentration. Sucrose was employed to control the dielectric properties in the microwave spectrum, whereas cellulose was used as acoustic scatterer for ultrasound. For the dielectric properties at microwaves, a mathematical model was extracted to calculate the complex permittivity of the desired mimicked tissues in the frequency range from 500 MHz to 20 GHz. This model, dependent on frequency and sucrose concentration, was in good agreement with the reference Cole–Cole model. Regarding the acoustic properties, the speed of sound and attenuation coefficient were employed for validation. In both cases, the experimental data were consistent with the corresponding theoretical values for soft tissues. The characterization of these PVA-C phantoms demonstrated a significant performance for simultaneous microwave and ultrasound operation. In conclusion, PVA-C has been validated as gelling agent for the fabrication of complex multimodal phantoms that mimic soft tissues providing a unique tool to be used in a range of clinical applications. | URI: | http://hdl.handle.net/10553/76424 | ISSN: | 2045-2322 | DOI: | 10.1038/s41598-020-77368-5 | Fuente: | Scientific Reports[EISSN 2045-2322],v. 10 (1), 20401, (Diciembre 2020) |
Colección: | Artículos |
Citas SCOPUSTM
11
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
11
actualizado el 15-dic-2024
Visitas
137
actualizado el 28-sep-2024
Descargas
151
actualizado el 28-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.