Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74205
Título: On automatic diagnosis of Alzheimer's Disease based on spontaneous speech analysis and emotional temperature
Autores/as: Lopez-de-Ipina, K.
Alonso, J. B. 
Sole-Casals, J.
Barroso, N.
Henríquez Sánchez, Patricia 
Faundez-Zanuy, M.
Travieso González, Carlos Manuel 
Ecay-Torres, M.
Martinez-Lage, P.
Eguiraun, H.
Clasificación UNESCO: 32 Ciencias médicas
33 Ciencias tecnológicas
Palabras clave: Dementia
Alzheimer'S Disease Diagnosis
Spontaneous Speech
Emotion Recognition
Fecha de publicación: 2015
Publicación seriada: Cognitive Computation 
Resumen: Alzheimer's disease (AD) is the most prevalent form of progressive degenerative dementia; it has a high socioeconomic impact in Western countries. Therefore, it is one of the most active research areas today. Alzheimer's disease is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a postmortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early AD detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of AD by noninvasive methods. The purpose is to examine, in a pilot study, the potential of applying machine learning algorithms to speech features obtained from suspected Alzheimer's disease sufferers in order to help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: spontaneous speech and emotional response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of AD patients.
URI: http://hdl.handle.net/10553/74205
ISSN: 1866-9956
DOI: 10.1007/s12559-013-9229-9
Fuente: Cognitive Computation [ISSN 1866-9956], v. 7 (1), p. 44-55, (Febrero 2015)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

85
actualizado el 15-dic-2024

Visitas

167
actualizado el 14-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.