Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/74178
Título: | An optimization algorithm for imprecise multi-objective problem functions | Autores/as: | Limbourg, Philipp Aponte, Daniel E.Salazar |
Clasificación UNESCO: | 12 Matemáticas | Fecha de publicación: | 2005 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Publicación seriada: | IEEE Transactions on Evolutionary Computation | Conferencia: | 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005 | Resumen: | Real world objective functions often produce two types of uncertain output: Noise and imprecision. While there is a distinct difference between both types, most optimization algorithms treat them the same. This paper introduces an alternative way to handle imprecise, interval-valued objective functions, namely imprecision-propagating MOEAs. Hypervolume metrics and imprecision measures are extended to imprecise Pareto sets. The performance of the new approach is experimentally compared to a standard distribution-assuming MOEA. | URI: | http://hdl.handle.net/10553/74178 | ISBN: | 0780393635 | ISSN: | 1089-778X | DOI: | 10.1109/CEC.2005.1554719 | Fuente: | 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings, v. 1, p. 459-466, (Octubre 2005) |
Colección: | Actas de congresos |
Citas SCOPUSTM
109
actualizado el 24-nov-2024
Visitas
66
actualizado el 19-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.