Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73739
Título: Identifying critical hotel cancellations using artificial intelligence
Autores/as: Caballero Sánchez, Eleazar 
Sánchez Medina, Agustín Jesús 
Pellejero Silva, Mónica Avelina 
Clasificación UNESCO: 120304 Inteligencia artificial
531290 Economía sectorial: turismo
Palabras clave: Artificial intelligence
Cancellations
Forecasting models
Hotel
Revenue management
Fecha de publicación: 2020
Publicación seriada: Tourism Management Perspectives 
Resumen: Cancellations have a significant impact on the hotel and lodging industry because they directly affect income and are thus considered critical in revenue management. Specifically, cancellations made close to the time of service are the most damaging for hotels because they leave management with no time to react. The use of Personal Name Records (PNR) has led to new approaches in this field, however despite this novel research area there are no investigations focusing on forecasting for individual hotel cancellations made close to the time of service. With the aim of filling this gap, this research is intended to identify those individuals likely to make cancellations in a short-horizon of time using Artificial Intelligence (AI) techniques through PNR data. Promising results have been achieved with 80% accuracy for cancellations made 7 days in advance. By taking this approach, booking management systems, as well as cancellation policies may be optimised.
URI: http://hdl.handle.net/10553/73739
ISSN: 2211-9736
DOI: 10.1016/j.tmp.2020.100718
Fuente: Tourism Management Perspectives [ISSN 2211-9736], v. 35, 100718, (Julio 2020)
Colección:Artículos
Unknown (607,4 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.