Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73739
Título: | Identifying critical hotel cancellations using artificial intelligence | Autores/as: | Caballero Sánchez, Eleazar Sánchez Medina, Agustín Jesús Pellejero Silva, Mónica Avelina |
Clasificación UNESCO: | 120304 Inteligencia artificial 531290 Economía sectorial: turismo |
Palabras clave: | Artificial intelligence Cancellations Forecasting models Hotel Revenue management |
Fecha de publicación: | 2020 | Publicación seriada: | Tourism Management Perspectives | Resumen: | Cancellations have a significant impact on the hotel and lodging industry because they directly affect income and are thus considered critical in revenue management. Specifically, cancellations made close to the time of service are the most damaging for hotels because they leave management with no time to react. The use of Personal Name Records (PNR) has led to new approaches in this field, however despite this novel research area there are no investigations focusing on forecasting for individual hotel cancellations made close to the time of service. With the aim of filling this gap, this research is intended to identify those individuals likely to make cancellations in a short-horizon of time using Artificial Intelligence (AI) techniques through PNR data. Promising results have been achieved with 80% accuracy for cancellations made 7 days in advance. By taking this approach, booking management systems, as well as cancellation policies may be optimised. | URI: | http://hdl.handle.net/10553/73739 | ISSN: | 2211-9736 | DOI: | 10.1016/j.tmp.2020.100718 | Fuente: | Tourism Management Perspectives [ISSN 2211-9736], v. 35, 100718, (Julio 2020) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.