Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73438
Título: The 8T-LE partition applied to the obtuse triangulations of the 3D-cube
Autores/as: Padrón Medina, Miguel Ángel 
Plaza De La Hoz, Ángel 
Clasificación UNESCO: 1206 Análisis numérico
120602 Ecuaciones diferenciales
120309 Diseño con ayuda del ordenador
Palabras clave: Similarity classes
8-tetrahedra longest-edge partition
Trirectangular tetrahedron
Right-type tetrahedron
Quasi-right-type tetrahedron
Fecha de publicación: 2020
Proyectos: Métodos de Mallas Para la Representación Del Impacto Visual de Instalaciones Energéticas en Entornos de Realidad Virtual y Aumentada 
Publicación seriada: Mathematics and Computers in Simulation 
Resumen: Four of the six types of the regular triangulations of the 3D-cube, up to isomorphism, are obtuse. We study the eight-tetrahedra longest-edge partition (8T-LE) of the triangulations of the cube containing two regular right-type tetrahedra, two regular trirectangular tetrahedra and two quasi right-type tetrahedra. We prove that the iterative 8T-LE partition of these triangulations yields a sequence of triangulations where the number of similarity classes is bounded, and hence the non-degeneracy of the meshes is simply proved. It is also proved that asymptotically, most of the tetrahedra generated are regular right-type.
URI: http://hdl.handle.net/10553/73438
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2020.01.011
Fuente: Mathematics and Computers in Simulation [ISSN 0378-4754], v. 176, p. 254-265, (Octubre 2020)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

188
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.