Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73270
Título: | Unsupervised learning in reservoir computing for EEG-based emotion recognition | Autores/as: | Fourati, Rahma Ammar, Boudour Sánchez Medina, Javier Jesús Alimi, Adel M. |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Brain modeling Echo state network Electroencephalogram Electroencephalography Emotion recognition, et al. |
Fecha de publicación: | 2022 | Publicación seriada: | IEEE Transactions on Affective Computing | Resumen: | In real-world applications such as emotion recognition from recorded brain activity, data are captured from electrodes over time. These signals constitute a multidimensional time series. In this paper, Echo State Network (ESN), a recurrent neural network with great success in time series prediction and classification, is optimized with different neural plasticity rules for classification of emotions based on electroencephalogram (EEG) time series. The developed network could automatically extract valid features from EEG signals. We use the filtered signals as the network input and do not take any feature extraction methods. Evaluated on two well-known benchmarks, the DEAP dataset, and the SEED dataset, the performance of the ESN with intrinsic plasticity greatly outperforms the feature-based methods and shows certain advantages compared with other existing methods. Thus, the proposed network can form a more complete and efficient representation, whilst retaining the advantages such as faster learning speed and more reliable performance. | URI: | http://hdl.handle.net/10553/73270 | ISSN: | 1949-3045 | DOI: | 10.1109/TAFFC.2020.2982143 | Fuente: | IEEE Transactions on Affective Computing [EISSN 1949-3045], v. 13(2), p. 972-984 (2022) |
Colección: | Artículos |
Citas SCOPUSTM
34
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
33
actualizado el 17-nov-2024
Visitas
154
actualizado el 13-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.