Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/71041
Título: | Evaluación de técnicas de reducción de la dimensionalidad en imágenes hiperespectrales y su aplicación para la clasificación de ecosistemas terrestres | Autores/as: | Ibarrola Ulzurrun, Edurne Gonzalo Martin,Consuelo Marcello Ruiz, Francisco Javier |
Clasificación UNESCO: | 250616 Teledetección (Geología) | Palabras clave: | Hiperespectral Reducción de la dimensionalidad PCA MNF ICA, et al. |
Fecha de publicación: | 2017 | Editor/a: | Universitat Politècnica de València (UPV) | Resumen: | Las imágenes hiperespectrales tienen una resolución espectral extremadamente alta lo que supone una mayor complejidad y un elevado tiempo de cómputo. En este contexto, la reducción de la dimensionalidad es necesaria para permitir la aplicación eficiente de algoritmos de clasificación, así como la obtención de mapas temáticos más precisos donde la información utilizada para el proceso de clasificación depende del método de reducción. Por ello, tras una revisión del estado del arte, se ha observado la carencia de un estudio comparativo sobre las técnicas más usadas en la reducción de la dimensionalidad de las imágenes hiperespectrales. En este sentido, se han comparado las estrategias más comunes de reducción de la dimensionalidad, Principal Component Analysis (PCA), Minimum Noise Factor (MNF) e Independent Component Analysis (ICA), y evaluado su influencia en la clasificación de una imagen hiperespectral de alta resolución espacial del sensor CASI (Compact Airborne Spectrographic Imager), a través del algoritmo Support Vector Machine (SVM). Además, se han evaluado distintos métodos para determinar el número de componentes adecuado con información suficiente para una posterior clasificación. Hyperspectral imagery has an extremely high spectral resolution, which implies a greater complexity and high computation time. In this context, the dimensionality reduction is necessary to allow the efficient application of classification algorithms, as well as obtaining more precise thematic maps where the information used for the classification process depends on the reduction method. Therefore, after a review of the state of art, it has been observed the lack of a comparative study on the most used techniques in the dimensionality reduction process of hyperspectral imagery. In this context, it was compared the most common dimensional reduction strategies, Principal Component Analysis (PCA), Minimum Noise Factor (MNF) and Independent Component Analysis (ICA), and to evaluate its influence on the classification of a hyperspectral high-resolution image of CASI sensor (Compact Airborne Spectrographic Imager), through the Support Vector Machine (SVM) algorithm. In addition, different methods have been evaluated to determine the appropriate number of components with enough information for further classification. |
URI: | http://hdl.handle.net/10553/71041 | ISBN: | 978-84-9048-650-4 | Fuente: | XVII Congreso de la Asociación Española de Teledetección. Nuevas plataformas y sensores de teledetección. Libro de Actas / Luis A. Ruiz,; Javier Estornell; Manuel Erena, p. 395-398. |
Colección: | Actas de congresos |
Visitas
358
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.