Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69911
Título: Inconsistency detection on data communication standards using information extraction techniques: The ABP case
Autores/as: León del Rosario, Sonia 
Rodríguez-Mondéjar, José Antonio
Puente, Cristina
Clasificación UNESCO: 3307 Tecnología electrónica
330405 Sistemas de reconocimiento de caracteres
330413 Dispositivos de transmisión de datos
Palabras clave: Error Tolerant Process
Heuristic Algorithm
Industrial Communication Standard
Information Extraction
Natural Language Processing, et al.
Fecha de publicación: 2020
Publicación seriada: Advances in Intelligent Systems and Computing 
Conferencia: International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019) 
Resumen: The present research aims mainly, at establishing an error tolerant procedure that extracts information from Natural Language (NL) Communication Standard Documents along with storing error knowledge. The error knowledge will contain information about the detected errors and inconsistencies as well as the actions taken to solve them. It will act as a key tool for solving the detected errors at various levels of the procedure. As a particular scope, the searching of errors and inconsistencies will be based on comparing results from two NLP tools, parsing and chunking. Information Extraction (IE) technics, aided by some specific-developed heuristic algorithms, are used. The approach has been applied to two different-written texts describing the Alternating Bit Protocol (ABP). A Semantic Net is automatically extracted. The error knowledge provides information to the user about what fragments of the text contained inconsistent structures or words and how they were or not solved. The implemented algorithm solved inconsistencies related to words tagged differently by the NLP tools and showed other errors due to the use of complex syntactic structures. Specific metrics were extracted that permitted identify some features of the texts.
URI: http://hdl.handle.net/10553/69911
ISBN: 9783030200541
ISSN: 2194-5357
DOI: 10.1007/978-3-030-20055-8_28
Fuente: Advances in Intelligent Systems and Computing [ISSN 2194-5357],v. 950, p. 291-300
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

98
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.