Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69872
Título: | Extended linear mixing model in an ecosytem with high spectral variability | Autores/as: | Ibarrola-Ulzurrun, Edurne Drumetz, Lucas Chanussot, Jocelyn Gonzalo Martin,Consuelo Marcello, Javier |
Clasificación UNESCO: | 250616 Teledetección (Geología) | Palabras clave: | Ecosystem Management Hyperspectral Imagery Spectral Unmixing Spectral Variability Mixture Analysis, et al. |
Fecha de publicación: | 2018 | Publicación seriada: | IEEE International Geoscience and Remote Sensing Symposium proceedings | Conferencia: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018) | Resumen: | Hyperspectral imagery (HSI) has become an important tool in ecosystem conservation due to its capability to perform accurate spectral unmixing, for vegetation mapping and ecosystem monitoring. An issue to be solved is the spectral variability of endmembers that can be induced by sensor noise and topographic changes. This spectral variability is considered by the Extended Linear Mixing Model (ELMM), which is applied to a mountainous ecosystem with high spectral variability and radiometric changes in each swath. The results obtained are very satisfactory, achieving reasonable abundance estimations and accurate characterization of the variability within the scene. ELMM allows studying the features of each pixel, including additional information about the characterization of the mixed pixels, in HSI by taking spectral variability into account. Moreover, it is observed that ELMM is robust to the absence of pure pixels as well as to noise. | URI: | http://hdl.handle.net/10553/69872 | ISBN: | 9781538671504 | ISSN: | 2153-6996 | DOI: | 10.1109/IGARSS.2018.8519128 | Fuente: | IEEE International Geoscience and Remote Sensing Symposium proceedings [ISSN 2153-6996], v. 2018-July, p. 2685-2688 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.