Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69872
Título: Extended linear mixing model in an ecosytem with high spectral variability
Autores/as: Ibarrola-Ulzurrun, Edurne 
Drumetz, Lucas
Chanussot, Jocelyn
Gonzalo Martin,Consuelo 
Marcello, Javier 
Clasificación UNESCO: 250616 Teledetección (Geología)
Palabras clave: Ecosystem Management
Hyperspectral Imagery
Spectral Unmixing
Spectral Variability
Mixture Analysis, et al.
Fecha de publicación: 2018
Publicación seriada: IEEE International Geoscience and Remote Sensing Symposium proceedings 
Conferencia: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018) 
Resumen: Hyperspectral imagery (HSI) has become an important tool in ecosystem conservation due to its capability to perform accurate spectral unmixing, for vegetation mapping and ecosystem monitoring. An issue to be solved is the spectral variability of endmembers that can be induced by sensor noise and topographic changes. This spectral variability is considered by the Extended Linear Mixing Model (ELMM), which is applied to a mountainous ecosystem with high spectral variability and radiometric changes in each swath. The results obtained are very satisfactory, achieving reasonable abundance estimations and accurate characterization of the variability within the scene. ELMM allows studying the features of each pixel, including additional information about the characterization of the mixed pixels, in HSI by taking spectral variability into account. Moreover, it is observed that ELMM is robust to the absence of pure pixels as well as to noise.
URI: http://hdl.handle.net/10553/69872
ISBN: 9781538671504
ISSN: 2153-6996
DOI: 10.1109/IGARSS.2018.8519128
Fuente: IEEE International Geoscience and Remote Sensing Symposium proceedings [ISSN 2153-6996], v. 2018-July, p. 2685-2688
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.