Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69835
Título: | Subgroup optimal decisions in cost–effectiveness analysis | Autores/as: | Moreno, E. Vázquez Polo, Francisco José Negrín Hernández, Miguel Ángel Martel Escobar, María Carmen |
Clasificación UNESCO: | 530204 Estadística económica | Palabras clave: | Bayesian Variable Selection Cost–Effectiveness Optimal Treatments Estadística bayesiana Optimización, et al. |
Fecha de publicación: | 2019 | Proyectos: | Aportaciones A la Toma de Decisiones Bayesianas Óptimas: Aplicaciones Al Coste-Efectividad Con Datos Clínicos y Al Análisis de Riestos Con Datos Acturiales. CEICANARIAS2017–025 |
Publicación seriada: | Advances in Intelligent Systems and Computing | Conferencia: | 15th International Conference on Distributed Computing and Artificial Intelligence, DCAI 2018 | Resumen: | In cost–effectiveness analysis (CEA) of medical treatments the optimal treatment is chosen using an statistical model of the cost and effectiveness of the treatments, and data from patients under the treatments. Sometimes these data also include values of certain deterministic covariates of the patients which usually have valuable clinical information that would be incorporated into the statistical treatment selection procedure. This paper discusses the usual statistical models to undertake this task, and the main statistical problems it involves. The consequence is that the optimal treatments are now given for patient subgroups instead of for the patient population, where the subgroup are defined by those patients that share some covariate values, for instance age, gender, etc. Some of the covariates are non necessarily influential, as typically occurs in regression analysis, and an statistical variable selection procedure is called for. A Bayesian variable selection procedure is presented, and optimal treatments for subgroups defined by the selected covariates are then found. | URI: | http://hdl.handle.net/10553/69835 | ISBN: | 9783319996974 | ISSN: | 2194-5357 | DOI: | 10.1007/978-3-319-99698-1_8 | Fuente: | Advances in Intelligent Systems and Computing[ISSN 2194-5357],v. 805, p. 67-74 |
Colección: | Actas de congresos |
Visitas
173
actualizado el 03-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.