Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69753
Título: Identification of amyotrophic lateral sclerosis using EMG signals
Autores/as: Sengar, Namita
Dutta, Malay Kishore
Travieso González, Carlos Manuel 
Clasificación UNESCO: 32 Ciencias médicas
3314 Tecnología médica
Palabras clave: Amyotrophic Lateral Sclerosis
Emg Signals
Signal Processing
Fecha de publicación: 2017
Publicación seriada: 2017 4Th Ieee Uttar Pradesh Section International Conference On Electrical, Computer And Electronics, Upcon 2017
Conferencia: 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017 
Resumen: Electromyography (EMG) signal is a biomedical signal that is used to measure the electrical current generated in muscles during neuromuscular activities. This paper presents a method which uses EMG signals collected from biceps brachii muscles to identify Amyotrophic Lateral Sclerosis (ALS) disease using machine learning method. The work presents basic analysis and classification of EMG signals recorded from healthy and ALS subjects for automated screening of ALS disease using signal processing. Some characteristics of EMG signals such as maximum amplitude and mean of amplitude are strategically quantified and classified by using neural network classifier to automate the diagnosis of ALS Disease. Experiments were carried on the EMG database created under EMG Lab, United States and results are encouraging. The experiment result indicates enough discrimination between ALS and healthy EMG signals for automated screening.
URI: http://hdl.handle.net/10553/69753
ISBN: 9781538630044
DOI: 10.1109/UPCON.2017.8251093
Fuente: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017,v. 2018-January, p. 468-471
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

13
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 25-feb-2024

Visitas

106
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.