Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69753
Campo DC Valoridioma
dc.contributor.authorSengar, Namita-
dc.contributor.authorDutta, Malay Kishore-
dc.contributor.authorTravieso González, Carlos Manuel-
dc.date.accessioned2020-02-05T12:49:51Z-
dc.date.available2020-02-05T12:49:51Z-
dc.date.issued2017-
dc.identifier.isbn9781538630044-
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/69753-
dc.description.abstractElectromyography (EMG) signal is a biomedical signal that is used to measure the electrical current generated in muscles during neuromuscular activities. This paper presents a method which uses EMG signals collected from biceps brachii muscles to identify Amyotrophic Lateral Sclerosis (ALS) disease using machine learning method. The work presents basic analysis and classification of EMG signals recorded from healthy and ALS subjects for automated screening of ALS disease using signal processing. Some characteristics of EMG signals such as maximum amplitude and mean of amplitude are strategically quantified and classified by using neural network classifier to automate the diagnosis of ALS Disease. Experiments were carried on the EMG database created under EMG Lab, United States and results are encouraging. The experiment result indicates enough discrimination between ALS and healthy EMG signals for automated screening.-
dc.languageeng-
dc.relation.ispartof2017 4Th Ieee Uttar Pradesh Section International Conference On Electrical, Computer And Electronics, Upcon 2017-
dc.source2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017,v. 2018-January, p. 468-471-
dc.subject32 Ciencias médicas-
dc.subject3314 Tecnología médica-
dc.subject.otherAmyotrophic Lateral Sclerosis-
dc.subject.otherEmg Signals-
dc.subject.otherSignal Processing-
dc.titleIdentification of amyotrophic lateral sclerosis using EMG signals-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017-
dc.identifier.doi10.1109/UPCON.2017.8251093-
dc.identifier.scopus85045927155-
dc.identifier.isi000426124200082-
dc.contributor.authorscopusid56964145800-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57196462914-
dc.description.lastpage471-
dc.description.firstpage468-
dc.relation.volume2018-January-
dc.investigacionCiencias de la Salud-
dc.type2Actas de congresos-
dc.contributor.daisngid2084815-
dc.contributor.daisngid35026383-
dc.contributor.daisngid265761-
dc.description.numberofpages4-
dc.identifier.eisbn978-1-5386-3004-4-
dc.utils.revision-
dc.contributor.wosstandardWOS:Sengar, N-
dc.contributor.wosstandardWOS:Dutta, MK-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.date.coverdateJunio 2017-
dc.identifier.conferenceidevents121087-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate26-10-2017-
crisitem.event.eventsenddate28-10-2017-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

13
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 25-feb-2024

Visitas

106
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.