Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69494
Título: Proposal and comparative study of evolutionary algorithms for optimum design of a gear system
Autores/as: Méndez Babey, Máximo 
Rossit, Daniel A.
González Landín, Begoña 
Frutos, Mariano
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Differential evolution
Evolutionary computation
Gear train optimization
Genetic algorithms
Mechanical engineering, et al.
Fecha de publicación: 2020
Publicación seriada: IEEE Access 
Resumen: This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.
URI: http://hdl.handle.net/10553/69494
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2019.2962906
Fuente: IEEE Access [ISSN 2169-3536], v. 8, p. 3482 - 3497
Colección:Artículos
miniatura
pdf
Adobe PDF (2,85 MB)
Vista completa

Citas SCOPUSTM   

7
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 17-nov-2024

Visitas

159
actualizado el 10-mar-2024

Descargas

242
actualizado el 10-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.