Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/60013
Título: | Classification using unmixing models in areas with substantial endmember variability | Autores/as: | Ibarrola-Ulzurrun, Edurne Drumetz, Lucas Chanussot, Jocelyn Marcello, Javier Gonzalo Martin,Consuelo |
Clasificación UNESCO: | 250616 Teledetección (Geología) | Palabras clave: | HSI | Fecha de publicación: | 2018 | Publicación seriada: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | Conferencia: | 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2018 | Resumen: | Hyperspectral imagery (HSI) can significantly contribute to habitat monitoring which is essential to ecosystem management. Specifically, spectral unmixing in HSI is an important tool for habitat conservation status assessment. However, an issue found is the spectral variability of the endmembers that can be addressed by the Extended Linear Mixing Model (ELMM), which considers this spectral variability for obtaining accurate abundance maps. An analysis is performed in a mountainous ecosystem with high spectral variations. Classification maps are obtained from the abundance maps to assess the unmixing models. Results are very satisfactory, plausible abundances are estimated with accurate characterization of variability within the scene and overall accuracies over 83%are obtained. ELMM and Robust ELMM allow studying the features of each pixel, including additional information about characterization of mixed pixels, by considering spectral variability and being more robust to the absence ofpure pixels as well as to noise. | URI: | http://hdl.handle.net/10553/60013 | ISSN: | 2158-6276 | DOI: | 10.1109/WHISPERS.2018.8747096 | Fuente: | Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing [ISSN 2158-6276], v. 2018-September (8747096) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 24-nov-2024
Visitas
113
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.