Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54676
Título: | Convergence speed of generalized longest-edge-based refinement | Autores/as: | Suárez, José P. Moreno, Tania Abad, Pilar Plaza, Ángel |
Clasificación UNESCO: | 120603 Análisis de errores | Fecha de publicación: | 2013 | Publicación seriada: | Lecture Notes in Electrical Engineering | Conferencia: | 2012 World Congress on Engineering, WCE 2012 | Resumen: | In the refinement of meshes, one wishes to iteratively subdivide a domain following geometrical partition rules. The aim is to obtain a new discretized domain with adapted regions. We prove that the Longest Edge n -section of triangles for n⩾4 produces a finite sequence of triangle meshes with guaranteed convergence of diameters and review previous result when n equals 2 and 3. We give upper and lower bounds for the convergence speed in terms of diameter reduction. Then we fill the gap in the analysis of the diameters convergence for generalized Longest Edge based refinement. In addition, we give a numerical study for the case of n=4 , the so-called LE quatersection, evidencing its utility in adaptive mesh refinement. | URI: | http://hdl.handle.net/10553/54676 | ISBN: | 978-94-007-6189-6 | ISSN: | 1876-1100 | DOI: | 10.1007/978-94-007-6190-2-39 | Fuente: | Yang GC., Ao S., Gelman L. (eds) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 229, p. 511-522. Springer, Dordrecht, |
Colección: | Actas de congresos |
Visitas
66
actualizado el 04-feb-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.