Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54652
Título: A Counterpropagation network based system for screening of mild cognitive Impairment
Autores/as: Martínez García, J. M.
García Báez, P.
Pérez Del Pino, Miguel Angel 
Fernández Viadero, C.
Suárez-Araujo, C. P. 
Clasificación UNESCO: 120304 Inteligencia artificial
3201 Ciencias clínicas
Fecha de publicación: 2012
Conferencia: 2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, SISY 2012 
Resumen: Alzheimer's Disease (AD) and other dementias are one of the public health challenges mainly because of the relationship between population longevity and the increase of the pathology incidence. Furthermore, first symptoms appear several years after beginning of the disease and the progression of the cognitive decline rises over time. Therefore, it is necessary to accomplish diagnosis at the earliest possible stage, since the subject shows a slight impairment in some cognitive function. The detection of this state, named Mild Cognitive Impairment (MCI), is a complex task in medicine. The difficult distinction is between normal ageing and MCI rather than between MCI and AD. In this paper, we propose a CPN based system and a scheme of data fusion to aid MCI diagnosis. We present our preliminary results on MCI detection, using as dataset structure a simple combination of cognitive and functional measurements and the educational level of patients, gathered during clinical consultations. We have tackled an imbalanced classification problem developing a novel extended over-sampling method, SNEOM. Finally, we also performed a comparative study between our intelligent clinical decision system and a clinical expert, revealing the high level of performance of our proposal.
URI: http://hdl.handle.net/10553/54652
ISBN: 978-1-4673-4751-8
ISSN: 1949-047X
DOI: 10.1109/SISY.2012.6339488
Fuente: 2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, SISY 2012 (6339488), p. 67-72
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

56
actualizado el 18-mar-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.