Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54589
Título: Neural network ensembles with missing data processing and data fusion capacities: applications in medicine and in the environment
Autores/as: García Báez, Patricio 
Suárez Araujo, Carmen Paz 
Fernández López, Pablo 
Clasificación UNESCO: 120304 Inteligencia artificial
32 Ciencias médicas
Palabras clave: Ensemble systems
Missing data
Data fusion
Artificial neural network
HUMANN, et al.
Fecha de publicación: 2011
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 11th International Work-Conference on Artificial Neural Networks (IWANN) 
11th International Work-Conference on on Artificial Neural Networks, IWANN 2011 
Resumen: An important way to reach a qualitative improvement of Artificial Neural Networks (ANNs) is to incorporate biological features in the networks. Our proposal introduces modularity at two different levels, first, at the network level and second, at the intrinsic level of the networks, generating neural network ensembles (NNEs). We designed three NNEs which incorporated new capacities with regard to the processing of missing data, introduced hybrid modularity, and also used modular ANNs for building the NNEs. We have investigated a suitable NNE design where selection and fusion are recurrently applied to a population of best combinations of classifiers. In this paper we explore the ability of the proposed NNE in different automated decision making applications, especially for those with inherent complexity in their information environment. We present some results on dementia diagnosis and on automatic pollutants detection.
URI: http://hdl.handle.net/10553/54589
ISBN: 978-3-642-21497-4
ISSN: 0302-9743
DOI: 10.1007/978-3-642-21498-1_22
Fuente: Cabestany J., Rojas I., Joya G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.