Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54441
Título: A variational approach for 3D motion estimation of incompressible PIV flows
Autores/as: Alvarez, Luis 
Castaño, Carlos
García, Miguel
Krissian, Karl
Mazorra, Luis 
Salgado, Agustín
Sánchez, Javier 
Clasificación UNESCO: 120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
220990 Tratamiento digital. Imágenes
Palabras clave: Optical-Flow
Computation
Fecha de publicación: 2007
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 1st International Conference on Scale Space and Variational Methods in Computer Vision 
1st International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2007 
Resumen: Estimation of motion has many applications in fluid analysis. Lots of work has been carried out using Particle Image Velocimetry to design experiments which capture and measure the flow motion using 2D images. Recent technological advances allow capturing 3D PIV image sequences of moving particles. In this context, we propose a new three-dimensional variational (energy-based) technique. Our technique is based on solenoidal projection to take into account the incompressibility of the real flow. It uses the result of standard flow motion estimation techniques like iterative cross-correlation or pyramidal optical flow as an initialization, and improves significantly their accuracies. The performance of the proposed technique is measured and illustrated using numerical simulations.
URI: http://hdl.handle.net/10553/54441
ISBN: 9783540728221
ISSN: 0302-9743
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 4485 LNCS, p. 837-847
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

4
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 25-feb-2024

Visitas

170
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.