Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54392
Título: A parametric study of humann in relation to the noise: application for the identification of compounds of environmental interest
Autores/as: García Báez, Patricio 
López, Pablo Fernández 
Suárez Araujo, Carmen Paz 
Clasificación UNESCO: 120304 Inteligencia artificial
250902 Contaminación atmosférica
Palabras clave: Unsupervised neural networks
Clustering
Noise
Fluorescence identification
Adaptive neural networks
Fecha de publicación: 2003
Editor/a: 0232-9298
Publicación seriada: Systems Analysis Modelling Simulation 
Resumen: In this paper we present a parametric study of a hierarchical unsupervised modular adaptive neural network (HUMANN), in dealing with noise. HUMANN is a biologically plausible feedforward neural architecture which has the capacity for working in domains with noise and overlapping classes, with no priori information of the number of different classes in the data, with highly non-linear boundary class and with high dimensionality data vectors. It is appropriate for classification processes performing blind clustering. The study has been accomplished round the two most noise-dependent HUMANN parameters, λ and ρ, using synthesized databases (sinusoidal signals with Gaussian noise). We show that HUMANN is highly resistant to noise, improving the performance of different neural architectures such as ART2 and DIGNET. We also present the application of HUMANN for the identification of pollutants in the environment. Specifically it has been tested with Polychlorinated dibenzofurans (PCDFs), some of the most hazardous pollutants of the environment.
URI: http://hdl.handle.net/10553/54392
ISSN: 0232-9298
DOI: 10.1080/02329290310001600282
Fuente: Systems Analysis Modelling Simulation [ISSN 0232-9298], v. 43, p. 1213-1228
Colección:Artículos
Vista completa

Citas SCOPUSTM   

10
actualizado el 17-nov-2024

Visitas

93
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.