Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54392
Campo DC Valoridioma
dc.contributor.authorGarcía Báez, Patricioen_US
dc.contributor.authorLópez, Pablo Fernándezen_US
dc.contributor.authorSuárez Araujo, Carmen Pazen_US
dc.date.accessioned2019-02-18T10:31:17Z-
dc.date.available2019-02-18T10:31:17Z-
dc.date.issued2003en_US
dc.identifier.issn0232-9298en_US
dc.identifier.urihttp://hdl.handle.net/10553/54392-
dc.description.abstractIn this paper we present a parametric study of a hierarchical unsupervised modular adaptive neural network (HUMANN), in dealing with noise. HUMANN is a biologically plausible feedforward neural architecture which has the capacity for working in domains with noise and overlapping classes, with no priori information of the number of different classes in the data, with highly non-linear boundary class and with high dimensionality data vectors. It is appropriate for classification processes performing blind clustering. The study has been accomplished round the two most noise-dependent HUMANN parameters, λ and ρ, using synthesized databases (sinusoidal signals with Gaussian noise). We show that HUMANN is highly resistant to noise, improving the performance of different neural architectures such as ART2 and DIGNET. We also present the application of HUMANN for the identification of pollutants in the environment. Specifically it has been tested with Polychlorinated dibenzofurans (PCDFs), some of the most hazardous pollutants of the environment.en_US
dc.languageengen_US
dc.publisher0232-9298-
dc.relation.ispartofSystems Analysis Modelling Simulationen_US
dc.sourceSystems Analysis Modelling Simulation [ISSN 0232-9298], v. 43, p. 1213-1228en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject250902 Contaminación atmosféricaen_US
dc.subject.otherUnsupervised neural networksen_US
dc.subject.otherClusteringen_US
dc.subject.otherNoiseen_US
dc.subject.otherFluorescence identificationen_US
dc.subject.otherAdaptive neural networksen_US
dc.titleA parametric study of humann in relation to the noise: application for the identification of compounds of environmental interesten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/02329290310001600282
dc.identifier.scopus33746371662-
dc.contributor.authorscopusid6506952458-
dc.contributor.authorscopusid57208877975
dc.contributor.authorscopusid57196509357-
dc.contributor.authorscopusid6603605708-
dc.description.lastpage1228-
dc.description.firstpage1213-
dc.relation.volume43-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2003
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

10
actualizado el 17-nov-2024

Visitas

93
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.