Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/53701
Título: | Articulatory Feature Extraction from Voice and Their Impact on Hybrid Acoustic Models | Autores/as: | Llombart, Jorge Miguel, Antonio Lleida, Eduardo |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Articulatory features Neural network Hybrid models |
Fecha de publicación: | 2014 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Resumen: | There is a great amount of information in the speech signal, although current speech recognizers do not exploit it completely. In this paper articulatory information is extracted from speech and fused to standard acoustic models to obtain a better hybrid acoustic model which provides improvements on speech recognition. The paper also studies the best input signal for the system in terms of type of speech features and time resolution to obtain a better articulatory information extractor. Then this information is fused to a standard acoustic model obtained with neural networks to perform the speech recognition achieving better results. | URI: | http://hdl.handle.net/10553/53701 | ISBN: | 978-3-319-13622-6 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-13623-3_15 | Fuente: | Advances in Speech and Language Technologies for Iberian Languages. Lecture Notes in Computer Science, v. 8854 LNCS, p. 138-147 |
Colección: | Capítulo de libro |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 20-feb-2022
Visitas
54
actualizado el 18-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.