Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/53701
Título: Articulatory Feature Extraction from Voice and Their Impact on Hybrid Acoustic Models
Autores/as: Llombart, Jorge
Miguel, Antonio
Lleida, Eduardo
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Articulatory features
Neural network
Hybrid models
Fecha de publicación: 2014
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Resumen: There is a great amount of information in the speech signal, although current speech recognizers do not exploit it completely. In this paper articulatory information is extracted from speech and fused to standard acoustic models to obtain a better hybrid acoustic model which provides improvements on speech recognition. The paper also studies the best input signal for the system in terms of type of speech features and time resolution to obtain a better articulatory information extractor. Then this information is fused to a standard acoustic model obtained with neural networks to perform the speech recognition achieving better results.
URI: http://hdl.handle.net/10553/53701
ISBN: 978-3-319-13622-6
ISSN: 0302-9743
DOI: 10.1007/978-3-319-13623-3_15
Fuente: Advances in Speech and Language Technologies for Iberian Languages. Lecture Notes in Computer Science, v. 8854 LNCS, p. 138-147
Colección:Capítulo de libro
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 20-feb-2022

Visitas

54
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.