Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52823
Título: Axioms and fundamental equations of image processing
Autores/as: Alvarez, Luis 
Guichard, Frédéric
Lions, Pierre Louis
Morel, Jean Michel
Clasificación UNESCO: 120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
220990 Tratamiento digital. Imágenes
Palabras clave: Classical Model
Electromagnetism
Scale Invariance
Invariance Property
Scale Space
Fecha de publicación: 1993
Publicación seriada: Archive for rational mechanics and analysis (Print) 
Resumen: Image-processing transforms must satisfy a list of formal requirements. We discuss these requirements and classify them into three categories: “architectural requirements” like locality, recursivity and causality in the scale space, “stability requirements” like the comparison principle and “morphological requirements”, which correspond to shape-preserving properties (rotation invariance, scale invariance, etc.). A complete classification is given of all image multiscale transforms satisfying these requirements. This classification yields a characterization of all classical models and includes new ones, which all are partial differential equations. The new models we introduce have more invariance properties than all the previously known models and in particular have a projection invariance essential for shape recognition. Numerical experiments are presented and compared. The same method is applied to the multiscale analysis of movies. By introducing a property of Galilean invariance, we find a single multiscale morphological model for movie analysis.
URI: http://hdl.handle.net/10553/52823
ISSN: 0003-9527
DOI: 10.1007/BF00375127
Fuente: Archive for Rational Mechanics and Analysis [ISSN 0003-9527], v. 123 (3), p. 199-257
Colección:Artículos
Vista completa

Citas SCOPUSTM   

733
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

537
actualizado el 17-nov-2024

Visitas

112
actualizado el 18-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.