Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52633
Título: | Bivariate credibility bonus-malus premiums distinguishing between two types of claims | Autores/as: | Gómez-Déniz, E. | Clasificación UNESCO: | 530405 Seguros | Palabras clave: | Bayesian Bonus-malus system Claim Claim size Conjugate distribution, et al. |
Fecha de publicación: | 2016 | Publicación seriada: | Insurance: Mathematics and Economics | Resumen: | We propose a modification of the bonus-malus system of tarification that is commonly applied in automobile insurance. Under the standard system, the premium assigned to each policyholder is based only on the number of claims made. Therefore, a policyholder who has had an accident producing a relatively small amount of loss is penalised to the same extent as one who has had a more costly accident. This outcome would seem to be unfair.Accordingly, we present a statistical model which distinguishes between two different types of claims, incorporating a bivariate distribution based on the assumption of dependence. We also describe a bivariate prior distribution conjugated with respect to the likelihood. This approach produces credibility bonus-malus premiums that satisfy appropriate transition rules. A practical example of its application is presented and the results obtained are compared with those derived from the traditional Poisson-Gamma model in which only the number of claims is taken into account. | URI: | http://hdl.handle.net/10553/52633 | ISSN: | 0167-6687 | DOI: | 10.1016/j.insmatheco.2016.06.009 | Fuente: | Insurance: Mathematics and Economics[ISSN 0167-6687],v. 70, p. 117-124 |
Colección: | Artículos |
Citas SCOPUSTM
22
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
21
actualizado el 17-nov-2024
Visitas
25
actualizado el 01-jul-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.