Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52591
Título: | Methodology for automatic bioacoustic classification of anurans based on feature fusion | Autores/as: | Noda, Juan J. Travieso, Carlos M. Sanchez-Rodriguez, David |
Clasificación UNESCO: | 240601 Bioacústica 3307 Tecnología electrónica |
Palabras clave: | Acoustic data fusion Bioacoustic taxonomy identification Biological acoustic analysis SVM |
Fecha de publicación: | 2016 | Publicación seriada: | Expert Systems with Applications | Resumen: | The automatic recognition of anurans by their calls provides indicators of ecosystem health and habitat quality. This paper presents a new methodology for the acoustic classification of anurans using a fusion of frequency domain features, Mel and Linear Frequency Cepstral Coefficients (MFCCs and LFCCs), with time domain features like entropy and syllable duration through intelligent systems. This methodology has been validated in three databases with a significant number of different species proving the strength of this approach. First, the audio recordings are automatically segmented into syllables which represent different anuran calls. For each syllable, both types of features are computed and evaluated separately as in previous works. In the experiments, a novel data fusion method has been used showing an increase of the classification accuracy which achieves an average of 98.80% ± 2.43 in 41 anuran species from AmphibiaWeb database, 96.90% ± 3.57 in 58 frogs from Cuba and 95.48% ± 4.97 in 100 anurans from southern Brazil and Uruguay; reaching a classification rate of 95.38% ± 5.05 for the aggregate dataset of 199 species. | URI: | http://hdl.handle.net/10553/52591 | ISSN: | 0957-4174 | DOI: | 10.1016/j.eswa.2015.12.020 | Fuente: | Expert Systems With Applications[ISSN 0957-4174],v. 50, p. 100-106 |
Colección: | Artículos |
Citas SCOPUSTM
26
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
26
actualizado el 17-nov-2024
Visitas
57
actualizado el 10-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.