Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52556
Título: | Computational intelligence in wave energy: Comprehensive review and case study | Autores/as: | Cuadra, L. Salcedo-Sanz, S. Nieto-Borge, J.C. Alexandre, E. Rodríguez, G. |
Clasificación UNESCO: | 251091 Recursos renovables 2510 Oceanografía |
Palabras clave: | Computational intelligence techniques Environmental impact Renewable energy Wave energy Wave energy converters |
Fecha de publicación: | 2016 | Publicación seriada: | Renewable & Sustainable Energy Reviews | Resumen: | Wind-generated wave energy is a renewable energy source that exhibits a huge potential for sustainable growth. The design and deployment of wave energy converters at a given location require the prediction of the amount of available wave energy flux. This and other wave parameters can be estimated by means of Computational Intelligence techniques (Neural, Fuzzy, and Evolutionary Computation). This paper reviews those used in wave energy applications, both in the resource estimation and in the design and control of wave energy converters. In particular, most of the applications of Neural Computation techniques, considered here in a broad sense, focus on the prediction of a variety of wave energy parameters by means of Multilayer Perceptrons and, at a lesser extent, by Support Vector Machines, and Extreme Learning Machines. Fuzzy Computation is also applied to estimate wave parameters and control floating wave energy converter. Evolutionary Computation algorithms are used to estimate parameters and design wave energy collectors. We complete this paper with a case study that illustrates, for the first time to the best of our knowledge, the potential of hybridizing a Coral Reefs Optimization algorithm with an Extreme Learning Machine to tackle the problem of significant wave height reconstruction. | URI: | http://hdl.handle.net/10553/52556 | ISSN: | 1364-0321 | DOI: | 10.1016/j.rser.2015.12.253 | Fuente: | Renewable and Sustainable Energy Reviews[ISSN 1364-0321],v. 58, p. 1223-1246 |
Colección: | Reseña |
Citas SCOPUSTM
75
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
68
actualizado el 24-nov-2024
Visitas
63
actualizado el 25-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.