Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52534
Título: | Hyperspectral database of pathological in-vitro human brain samples to detect carcinogenic tissues | Autores/as: | Ortega, S. Callico, G. M. Plaza, M.L. Camacho, R Fabelo, H. Sarmiento, R. |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Artificial neural network Brain cancer detection Data mining Hyperspectral imaging Support vector machine |
Fecha de publicación: | 2016 | Publicación seriada: | Proceedings - International Symposium on Biomedical Imaging | Conferencia: | 13th IEEE International Symposium on Biomedical Imaging (ISBI) 2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016 |
Resumen: | Hyperspectral imaging is an emerging technology for medical diagnosis. Some previous studies have used this type of images to detect cancer diseases. In this research work, a multidisciplinary team conformed by pathologists and engineers has created a diagnosed hyperspectral database of in-vitro human brain tissues. In order to capture the hyperspectral information from histological slides, an acquisition system based on a microscope coupled with a hyperspectral camera has been developed. Preliminary results of applying two different supervised classification algorithms (Support Vector Machines and Artificial Neural Networks) to the hyperspectral database show that an automatic discrimination between healthy and tumour brain tissues from in-vitro samples is possible using exclusively their spectral information. The sensitivity and the specificity are over 92% in all the cases. | URI: | http://hdl.handle.net/10553/52534 | ISBN: | 9781479923502 | ISSN: | 1945-7928 | DOI: | 10.1109/ISBI.2016.7493285 | Fuente: | Proceedings - International Symposium on Biomedical Imaging[ISSN 1945-7928],v. 2016-June (7493285), p. 369-372 |
Colección: | Actas de congresos |
Citas SCOPUSTM
13
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
8
actualizado el 17-nov-2024
Visitas
34
actualizado el 22-jul-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.