Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52420
Título: | Spectral analysis with replicated time series | Autores/as: | Saavedra Santana, Pedro Hernández, C. N. Artiles, J. |
Clasificación UNESCO: | 240401 Bioestadística | Palabras clave: | Average periodogram Kernel spectral estimate Bandwidth |
Fecha de publicación: | 2000 | Publicación seriada: | Communications in Statistics - Theory and Methods | Resumen: | A doubly stochastic process {x(b,t);b∊B,t∊Z} is considered, with (B,β,Pβ) being a probability space so that for each b, {X(b,t);t ∊ Z} is a stationary process with an absolutely continuous spectral distribution. The population spectrum is defined as f(ω) = EB[Q(b,ω)] with Q(b,ω) being the spectral density function of X(b,t). The aim of this paper is to estimate f(ω) by means of a random sample b1,…,br from (B,β,Pβ). For each b1∊ B, the processes X(b1,t) are observed at the same times t=1,…,N. Thus, r time series (x(b1,t)} are available in order to estimate f(ω). A model for each individual periodogram, which involves f(ω), is formulated. It has been proven that a certain family of linear stationary processes follows the above model In this context, a kernel estimator is proposed in order to estimate f(ω). The bias, variance and asymptotic distribution of this estimator are investigated under certain conditions. | URI: | http://hdl.handle.net/10553/52420 | ISSN: | 0361-0926 | DOI: | 10.1080/03610920008832610 | Fuente: | Communications in Statistics - Theory and Methods [ISSN 0361-0926], v. 29 (11), p. 2343-2362 |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
5
actualizado el 17-nov-2024
Visitas
88
actualizado el 09-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.