Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/51938
Título: | Data uncertainty management in path planning for underwater ocean gliders | Autores/as: | Hernández, Daniel Adler, Isern, J. Cabrera, J. Dominguez, A. Fernández, E. Prieto, V. Eichhorn, M. |
Clasificación UNESCO: | 120304 Inteligencia artificial 331913 Vehículos submarinos 120326 Simulación |
Fecha de publicación: | 2014 | Proyectos: | Planificación y Navegación de Vehículos Autónomos Submarinos: Asimilación y Validación de Modelos Oceánicos en 3D de Escala Regional en Aguas Del Archipiélago Canario. | Publicación seriada: | Oceans. Conference Record | Conferencia: | Oceans Conference OCEANS 2014 MTS/IEEE Taipei Conference: Oceans Regeneration |
Resumen: | The special characteristics of the ocean gliders propulsion scheme endows these vehicles with an extremely high endurance, at the cost of a relatively low surge speed. Hence, gliders' trajectory is highly influenced by ocean currents, which can even exceed the vehicle's nominal velocity. This calls for intelligent path planning algorithms, fact that reflects in the high number of solutions proposed by researchers that can be found in recent bibliography. In this paper we propose a novel method to combine multiple ocean forecast models in order to feed the glider path-planner with as reliable as possible source information. The scheme is configured as a multi-evidence fusion that integrates factors such as sensor vs model validation, forecast stability and model historic performance. | URI: | http://hdl.handle.net/10553/51938 | ISBN: | 978-1-4799-3646-5 | ISSN: | 0197-7385 | DOI: | 10.1109/OCEANS-TAIPEI.2014.6964498 |
Colección: | Actas de congresos |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 20-mar-2022
Visitas
101
actualizado el 23-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.