Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51612
Título: On the adjacencies of triangular meshes based on skeleton-regular partitions
Autores/as: Plaza, Angel 
Rivara, María Cecilia
Clasificación UNESCO: 120601 Construcción de algoritmos
Palabras clave: Adjacencies
Partitions
Triangular and tetrahedral meshes
Fecha de publicación: 2002
Publicación seriada: Journal of Computational and Applied Mathematics 
Conferencia: 9th International Congress on Computational and Applied Mathematics 
Resumen: For any 2D triangulation τ, the 1-skeleton mesh of τ is the wireframe mesh defined by the edges of τ, while that for any 3D triangulation τ, the 1-skeleton and the 2-skeleton meshes, respectively, correspond to the wireframe mesh formed by the edges of τ and the "surface" mesh defined by the triangular faces of τ. A skeleton-regular partition of a triangle or a tetrahedra, is a partition that globally applied over each element of a conforming mesh (where the intersection of adjacent elements is a vertex or a common face, or a common edge) produce both a refined conforming mesh and refined and conforming skeleton meshes. Such a partition divides all the edges (and all the faces) of an individual element in the same number of edges (faces). We prove that sequences of meshes constructed by applying a skeleton-regular partition over each element of the preceding mesh have an associated set of difference equations which relate the number of elements, faces, edges and vertices of the nth and (n - 1)th meshes. By using these constitutive difference equations we prove that asymptotically the average number of adjacencies over these meshes (number of triangles by node and number of tetrahedra by vertex) is constant when n goes to infinity. We relate these results with the non-degeneracy properties of longest-edge based partitions in 2D and include empirical results which support the conjecture that analogous results hold in 3D.
URI: http://hdl.handle.net/10553/51612
ISSN: 0377-0427
DOI: 10.1016/S0377-0427(01)00484-8
Fuente: Journal of Computational and Applied Mathematics [ISSN 0377-0427], v. 140 (1-2), p. 673-693
Colección:Artículos
Vista completa

Citas SCOPUSTM   

14
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 15-dic-2024

Visitas

126
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.