Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51612
Campo DC Valoridioma
dc.contributor.authorPlaza, Angelen_US
dc.contributor.authorRivara, María Ceciliaen_US
dc.contributor.otherPLAZA, ANGEL-
dc.contributor.otherRivara, Maria Cecilia-
dc.date.accessioned2018-11-25T02:10:21Z-
dc.date.available2018-11-25T02:10:21Z-
dc.date.issued2002en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://hdl.handle.net/10553/51612-
dc.description.abstractFor any 2D triangulation τ, the 1-skeleton mesh of τ is the wireframe mesh defined by the edges of τ, while that for any 3D triangulation τ, the 1-skeleton and the 2-skeleton meshes, respectively, correspond to the wireframe mesh formed by the edges of τ and the "surface" mesh defined by the triangular faces of τ. A skeleton-regular partition of a triangle or a tetrahedra, is a partition that globally applied over each element of a conforming mesh (where the intersection of adjacent elements is a vertex or a common face, or a common edge) produce both a refined conforming mesh and refined and conforming skeleton meshes. Such a partition divides all the edges (and all the faces) of an individual element in the same number of edges (faces). We prove that sequences of meshes constructed by applying a skeleton-regular partition over each element of the preceding mesh have an associated set of difference equations which relate the number of elements, faces, edges and vertices of the nth and (n - 1)th meshes. By using these constitutive difference equations we prove that asymptotically the average number of adjacencies over these meshes (number of triangles by node and number of tetrahedra by vertex) is constant when n goes to infinity. We relate these results with the non-degeneracy properties of longest-edge based partitions in 2D and include empirical results which support the conjecture that analogous results hold in 3D.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.sourceJournal of Computational and Applied Mathematics [ISSN 0377-0427], v. 140 (1-2), p. 673-693en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherAdjacenciesen_US
dc.subject.otherPartitionsen_US
dc.subject.otherTriangular and tetrahedral meshesen_US
dc.titleOn the adjacencies of triangular meshes based on skeleton-regular partitionsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.relation.conference9th International Congress on Computational and Applied Mathematics
dc.identifier.doi10.1016/S0377-0427(01)00484-8
dc.identifier.scopus0036502979-
dc.identifier.isi000174733100039-
dc.identifier.isi000174733100039-
dcterms.isPartOfJournal Of Computational And Applied Mathematics-
dcterms.sourceJournal Of Computational And Applied Mathematics[ISSN 0377-0427],v. 140 (1-2), p. 673-693-
dc.contributor.authorscopusid7006613647-
dc.contributor.authorscopusid6701685919-
dc.description.lastpage693-
dc.identifier.issue1-2-
dc.description.firstpage673-
dc.relation.volume140-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000174733100039-
dc.contributor.daisngid259483-
dc.contributor.daisngid1130808-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.investigatorRIDJ-3775-2016-
dc.identifier.externalWOS:000174733100039-
dc.contributor.wosstandardWOS:Plaza, A
dc.contributor.wosstandardWOS:Rivara, MC
dc.date.coverdateMarzo 2002
dc.identifier.conferenceidevents120318
dc.identifier.ulpgces
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate17-07-2000-
crisitem.event.eventsenddate21-07-2000-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

14
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 17-nov-2024

Visitas

126
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.