Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/51610
Título: | The eight-tetrahedra longest-edge partition and Kuhn triangulations | Autores/as: | Plaza, Angel | Clasificación UNESCO: | 120601 Construcción de algoritmos | Palabras clave: | Eight-tetrahedra longest-edge partition Kuhn triangulation Right-type tetrahedron |
Fecha de publicación: | 2007 | Proyectos: | Mtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamiento | Publicación seriada: | Computers and Mathematics with Applications | Resumen: | The Kuhn triangulation of a cube is obtained by subdividing the cube into six right-type tetrahedra once a couple of opposite vertices have been chosen. In this paper, we explicitly define the eight-tetrahedra longest-edge (8T-LE) partition of right-type tetrahedra and prove that for any regular right-type tetrahedron t, the iterative 8T-LE partition of t yields a sequence of tetrahedra similar to the former one. Furthermore, based on the Kuhn-type triangulations, the 8T-LE partition commutes with certain refinements based on the canonical boxel partition of a cube and its Kuhn triangulation. | URI: | http://hdl.handle.net/10553/51610 | ISSN: | 0898-1221 | DOI: | 10.1016/j.camwa.2007.01.023 | Fuente: | Computers and Mathematics with Applications [ISSN 0898-1221], v. 54 (3), p. 427-433 |
Colección: | Artículos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 17-nov-2024
Visitas
126
actualizado el 09-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.