Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51610
Campo DC Valoridioma
dc.contributor.authorPlaza, Angelen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:09:20Z-
dc.date.available2018-11-25T02:09:20Z-
dc.date.issued2007en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://hdl.handle.net/10553/51610-
dc.description.abstractThe Kuhn triangulation of a cube is obtained by subdividing the cube into six right-type tetrahedra once a couple of opposite vertices have been chosen. In this paper, we explicitly define the eight-tetrahedra longest-edge (8T-LE) partition of right-type tetrahedra and prove that for any regular right-type tetrahedron t, the iterative 8T-LE partition of t yields a sequence of tetrahedra similar to the former one. Furthermore, based on the Kuhn-type triangulations, the 8T-LE partition commutes with certain refinements based on the canonical boxel partition of a cube and its Kuhn triangulation.en_US
dc.languageengen_US
dc.relationMtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamientoen_US
dc.relation.ispartofComputers and Mathematics with Applicationsen_US
dc.sourceComputers and Mathematics with Applications [ISSN 0898-1221], v. 54 (3), p. 427-433en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherEight-tetrahedra longest-edge partitionen_US
dc.subject.otherKuhn triangulationen_US
dc.subject.otherRight-type tetrahedronen_US
dc.titleThe eight-tetrahedra longest-edge partition and Kuhn triangulationsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.camwa.2007.01.023
dc.identifier.scopus34250893881-
dc.identifier.isi000248293700011-
dc.identifier.isi000248293700011-
dcterms.isPartOfComputers & Mathematics With Applications-
dcterms.sourceComputers & Mathematics With Applications [ISSN 0898-1221], v. 54 (3), p. 427-433-
dc.contributor.authorscopusid7006613647-
dc.description.lastpage433-
dc.identifier.issue3-
dc.description.firstpage427-
dc.relation.volume54-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateAgosto 2007
dc.identifier.ulpgces
dc.description.jcr0,72
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

7
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 17-nov-2024

Visitas

126
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.