Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/51610
DC FieldValueLanguage
dc.contributor.authorPlaza, Angelen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:09:20Z-
dc.date.available2018-11-25T02:09:20Z-
dc.date.issued2007en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://hdl.handle.net/10553/51610-
dc.description.abstractThe Kuhn triangulation of a cube is obtained by subdividing the cube into six right-type tetrahedra once a couple of opposite vertices have been chosen. In this paper, we explicitly define the eight-tetrahedra longest-edge (8T-LE) partition of right-type tetrahedra and prove that for any regular right-type tetrahedron t, the iterative 8T-LE partition of t yields a sequence of tetrahedra similar to the former one. Furthermore, based on the Kuhn-type triangulations, the 8T-LE partition commutes with certain refinements based on the canonical boxel partition of a cube and its Kuhn triangulation.en_US
dc.languageengen_US
dc.relationMtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamientoen_US
dc.relation.ispartofComputers and Mathematics with Applicationsen_US
dc.sourceComputers and Mathematics with Applications [ISSN 0898-1221], v. 54 (3), p. 427-433en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherEight-tetrahedra longest-edge partitionen_US
dc.subject.otherKuhn triangulationen_US
dc.subject.otherRight-type tetrahedronen_US
dc.titleThe eight-tetrahedra longest-edge partition and Kuhn triangulationsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.camwa.2007.01.023
dc.identifier.scopus34250893881-
dc.identifier.isi000248293700011-
dc.identifier.isi000248293700011-
dcterms.isPartOfComputers & Mathematics With Applications-
dcterms.sourceComputers & Mathematics With Applications [ISSN 0898-1221], v. 54 (3), p. 427-433-
dc.contributor.authorscopusid7006613647-
dc.description.lastpage433-
dc.identifier.issue3-
dc.description.firstpage427-
dc.relation.volume54-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateAgosto 2007
dc.identifier.ulpgces
dc.description.jcr0,72
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 17, 2024

Page view(s)

126
checked on Nov 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.