Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/50851
Título: | Respiration predicted from an Enzyme Kinetic Model and the Metabolic Theory of Ecology in two species of marine bacteria | Autores/as: | Aguiar González, Miguel Borja Packard, Ted T. Berdalet, Elisa Roy, Sylvie Gomez, May |
Clasificación UNESCO: | 251001 Oceanografía biológica | Palabras clave: | ETS Modeling respiration MTE Oxygen consumption |
Fecha de publicación: | 2012 | Editor/a: | 0022-0981 | Proyectos: | Estudio de Un Nuevo Modelo Mecanistico Para El Metabolismo Del Zooplancton | Publicación seriada: | Journal of Experimental Marine Biology and Ecology | Resumen: | Respiratory oxygen consumption is the result of a cell's biochemistry. It is caused by enzymatic activity of the respiratory electron transfer system (ETS). However, in spite of this understanding, respiration models continue to be based on allometric equations relating respiration to body size, body surface, or biomass. The Metabolic Theory of Ecology (MTE) is a current example. It is based on Kleiber's law relating respiration (R) and biomass (M) in the form, , where C is a constant, Ea is the Arrhenius activation energy, k is the Boltzmann constant for an atom or molecule, and T is the temperature in Kelvin. This law holds because biomass packages the ETS. In contrast, we bypass biomass and model respiration directly from its causal relationship with the ETS activity, R = f (ETS). We use a biochemical Enzyme Kinetic Model (EKM) of respiratory oxygen consumption based on the substrate control of the ETS. It postulates that the upper limit of R is set by the maximum velocity, Vmax, of complex I of the ETS and the temperature, and that the substrate availability, S, modulates R between zero and this upper limit. Kinetics of this thermal-substrate regulation is described by the Arrhenius and Michaelis–Menten equations... | URI: | http://hdl.handle.net/10553/50851 | ISSN: | 0022-0981 | DOI: | 10.1016/j.jembe.2011.09.018 | Fuente: | Journal Of Experimental Marine Biology And Ecology [ISSN 0022-0981], v. 412, p. 1-12 |
Colección: | Artículos |
Citas SCOPUSTM
14
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
14
actualizado el 17-nov-2024
Visitas
62
actualizado el 02-dic-2023
Descargas
160
actualizado el 02-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.