Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50851
Título: Respiration predicted from an Enzyme Kinetic Model and the Metabolic Theory of Ecology in two species of marine bacteria
Autores/as: Aguiar González, Miguel Borja 
Packard, Ted T. 
Berdalet, Elisa
Roy, Sylvie
Gomez, May 
Clasificación UNESCO: 251001 Oceanografía biológica
Palabras clave: ETS
Modeling respiration
MTE
Oxygen consumption
Fecha de publicación: 2012
Editor/a: 0022-0981
Proyectos: Estudio de Un Nuevo Modelo Mecanistico Para El Metabolismo Del Zooplancton 
Publicación seriada: Journal of Experimental Marine Biology and Ecology 
Resumen: Respiratory oxygen consumption is the result of a cell's biochemistry. It is caused by enzymatic activity of the respiratory electron transfer system (ETS). However, in spite of this understanding, respiration models continue to be based on allometric equations relating respiration to body size, body surface, or biomass. The Metabolic Theory of Ecology (MTE) is a current example. It is based on Kleiber's law relating respiration (R) and biomass (M) in the form, , where C is a constant, Ea is the Arrhenius activation energy, k is the Boltzmann constant for an atom or molecule, and T is the temperature in Kelvin. This law holds because biomass packages the ETS. In contrast, we bypass biomass and model respiration directly from its causal relationship with the ETS activity, R = f (ETS). We use a biochemical Enzyme Kinetic Model (EKM) of respiratory oxygen consumption based on the substrate control of the ETS. It postulates that the upper limit of R is set by the maximum velocity, Vmax, of complex I of the ETS and the temperature, and that the substrate availability, S, modulates R between zero and this upper limit. Kinetics of this thermal-substrate regulation is described by the Arrhenius and Michaelis–Menten equations...
URI: http://hdl.handle.net/10553/50851
ISSN: 0022-0981
DOI: 10.1016/j.jembe.2011.09.018
Fuente: Journal Of Experimental Marine Biology And Ecology [ISSN 0022-0981], v. 412, p. 1-12
Colección:Artículos
miniatura
PDF
Adobe PDF (272,73 kB)
Vista completa

Citas SCOPUSTM   

14
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 17-nov-2024

Visitas

62
actualizado el 02-dic-2023

Descargas

160
actualizado el 02-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.