Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/49465
Título: Stock-environment-recruitment models for North Atlantic albacore (Thunnus alalunga)
Autores/as: Arregui, Igor
Arrizabalaga, Haritz
Kirby, David S.
Martín-González, Juan Manuel 
Clasificación UNESCO: 510208 Pesca
Palabras clave: Albacore
Environment
Neural‐network
Prediction
Stock–recruitment, et al.
Fecha de publicación: 2006
Editor/a: 1054-6006
Publicación seriada: Fisheries Oceanography 
Resumen: Different stock–recruitment models were fitted to North Atlantic albacore (Thunnus alalunga) recruitment and spawning stock biomass data. A classical density dependence hypothesis, a recent environmental‐dependence hypothesis and a combination of both were considered. For the latter case, four stock–environment–recruitment models were used: Ricker, Beverton‐Holt, Deriso's General Model (modified to take into account environmental effects) and conditioned Neural Networks. Cross‐validation analysis showed that the modified Deriso model had the best predictive capability. It detected an inverse effect of the North Atlantic Oscillation (NAO) on recruitment, a Ricker‐type behaviour with density dependent overcompensation when environmental conditions are unfavourable and a Beverton–Holt‐type behaviour towards an asymptotic recruitment carrying capacity with favourable environmental conditions. The Neural Network model also detected that under favourable environmental conditions high spawning stock biomass does not necessarily have a depensatory effect on recruitment. Moreover, they suggest that under extremely favourable environmental conditions, albacore recruitment could increase well above the asymptotic carrying capacity predicted by Beverton–Holt‐type models. However, the general decrease in spawning stock biomass in recent years and increasing NAO trends suggest that there is low probability of exceptionally large recruitment in the future and instead there is a danger of recruitment overfishing.
URI: http://hdl.handle.net/10553/49465
ISSN: 1054-6006
DOI: 10.1111/j.1365-2419.2005.00399.x
Fuente: Fisheries Oceanography [ISSN 1054-6006], v. 15, p. 402-412
Colección:Artículos
Vista completa

Citas SCOPUSTM   

18
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

16
actualizado el 17-nov-2024

Visitas

114
actualizado el 31-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.