Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48816
Título: Rainfall forecasting based on ensemble empirical mode decomposition and neural networks
Autores/as: Beltrán-Castro, Juan
Valencia-Aguirre, Juliana
Orozco-Alzate, Mauricio
Castellanos-Domínguez, Germán
Travieso-González, Carlos M. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Forecasting
Neural Networks
Ensemble Empirical Mode Decomposition
Rainfall
Fecha de publicación: 2013
Publicación seriada: Lecture Notes in Computer Science 
Resumen: In this paper a methodology for rainfall forecasting is presented, using the principle of decomposition and ensemble. In the proposed framework, the employed decomposition technique is the Ensemble Empirical Mode Decomposition (EEMD), which divides the original data into a set of simple components. Each component is modeled with a Feed Forward Neural Network (FNN) as a forecasting tool. Finally, the individual forecasting results for all components are combined to obtain the prediction result of the input signal. Experiments were performed on a real-observed rainfall data, and the attained results were compared against a single FNN model for the raw data, showing an improvement on the system performance.
URI: http://hdl.handle.net/10553/48816
ISBN: 9783642386787
ISSN: 0302-9743
DOI: 10.1007/978-3-642-38679-4_47
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7902 LNCS, p. 471-480
Colección:Actas de congresos
miniatura
Adobe PDF (212,61 kB)
Vista completa

Citas SCOPUSTM   

19
actualizado el 15-dic-2024

Visitas

45
actualizado el 27-ene-2024

Descargas

48
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.