Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48816
Título: | Rainfall forecasting based on ensemble empirical mode decomposition and neural networks | Autores/as: | Beltrán-Castro, Juan Valencia-Aguirre, Juliana Orozco-Alzate, Mauricio Castellanos-Domínguez, Germán Travieso-González, Carlos M. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Forecasting Neural Networks Ensemble Empirical Mode Decomposition Rainfall |
Fecha de publicación: | 2013 | Publicación seriada: | Lecture Notes in Computer Science | Resumen: | In this paper a methodology for rainfall forecasting is presented, using the principle of decomposition and ensemble. In the proposed framework, the employed decomposition technique is the Ensemble Empirical Mode Decomposition (EEMD), which divides the original data into a set of simple components. Each component is modeled with a Feed Forward Neural Network (FNN) as a forecasting tool. Finally, the individual forecasting results for all components are combined to obtain the prediction result of the input signal. Experiments were performed on a real-observed rainfall data, and the attained results were compared against a single FNN model for the raw data, showing an improvement on the system performance. | URI: | http://hdl.handle.net/10553/48816 | ISBN: | 9783642386787 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-38679-4_47 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7902 LNCS, p. 471-480 |
Colección: | Actas de congresos |
Citas SCOPUSTM
19
actualizado el 15-dic-2024
Visitas
45
actualizado el 27-ene-2024
Descargas
48
actualizado el 27-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.