Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48784
Título: A note on the Quasi-Bayesian audit risk model for dollar unit sampling1
Autores/as: Hernandez-Bastida, A.
Vazquez-Polo, F. J. 
Fecha de publicación: 1997
Editor/a: 0963-8180
Publicación seriada: European Accounting Review 
Resumen: © 1997, Copyright Taylor & Francis Group, LLC.The Quasi-Bayesian (QB) model generates a complete probability mass function on the total amount of error in an accounting population for any random sample of dollar units or physical units. This probability mass function is used to estimate upper bounds (UBs) on the total amount of error in an accounting population. The underlying QB formulation can be summarized as Bayes' Theorem with a maximum likelihood, calculated using the multinomial distribution, substituted for the unknown likelihood. Any prior can be used. McCray did not provide any theoretical justification for using a maximum likelihood. To date the justification for the QB estimated UBs rests on intuitive arguments limited simulations and ‘windtunnel’ tests. All these suggest the QB UBs may be reliable for audit purposes. This paper provides the theoretical justification for using a maximum likelihood in the QB model. It is based on the concept of ‘partial prior information’.
URI: http://hdl.handle.net/10553/48784
ISSN: 0963-8180
DOI: 10.1080/713764737
Fuente: European Accounting Review[ISSN 0963-8180],v. 6, p. 501-507
Colección:Artículos
Vista completa

Citas SCOPUSTM   

1
actualizado el 01-dic-2024

Visitas

66
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.