Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48510
Título: | New Feature Extraction from Electroglottographic Signals Applied to Automatic Detection of Laryngeal Pathologies | Autores/as: | Alonso Hernández, Jesús Bernardino Barragan-Pulido, Maria L. Gonzalez-Torres, Jose P. Travieso González, Carlos Manuel Ferrer Ballester, Miguel Ángel De Leon Y De Juan, Jose Dutta, Malay Kishore Vyas, Garima |
Clasificación UNESCO: | 32 Ciencias médicas 3205 Medicina interna |
Palabras clave: | Electroglottography Laryngeal disease Signal processing Parameter extraction Support Vector Machine |
Fecha de publicación: | 2018 | Proyectos: | Generacion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamiento | Publicación seriada: | IEEE Access | Conferencia: | 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018 | Resumen: | The objective of this report is to design a mechanism of classification that, through electroglottography, helps distinguishing between healthy and pathological subjects, as well as maximizing the efficiency of electroglottography through an optimal configuration of the classification parameters of SVM (Support Vector Machine). The proposed system consists in parameterizing electroglottography signals obtained in the open database, Saarbruecken Voice DataBase, and to draw the more relevant characteristics in temporary, frequency and cepstral domain. Afterwards, the samples are classified with a SVM. The study carried out contains different combinations of parameters and characteristics in order to assess the appropriate configuration considering: the recorded vowel, the type of windowing, the configured SVM percentages of training and the different values of the SVM parameters. The results obtained are compared to the real data, in this way, it is obtained the performance values of the system (precision, sensitivity and specificity) for each features configuration contemplated. The best results come from vowel I, 30 ms windowing with 50% overlapping, percentages of training around 80-90% (PES higher than PEP) and γ and σ 2 values of 100 and 0.1 respectively. This study expects to provide a greater knowledge to the classification methods based on electroglottography as an aid in diagnosing laryngeal diseases. | URI: | http://hdl.handle.net/10553/48510 | ISBN: | 9781538630457 | ISSN: | 2168-2232 | DOI: | 10.1109/SPIN.2018.8474260 | Fuente: | 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018 (8474260), p. 365-371 |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 15-dic-2024
Visitas
65
actualizado el 30-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.