Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48147
Título: An insect-based method for learning landmark reliability using expectation reinforcement in dynamic environments
Autores/as: Mathews, Zenon
Verschure, Paul F M J
Bermúdez I Badia, Sergi 
Clasificación UNESCO: 32 Ciencias médicas
3313 Tecnología e ingeniería mecánicas
Palabras clave: Navigation
Insects
Vehicle dynamics
Biological systems
Robotics and automation, et al.
Fecha de publicación: 2010
Publicación seriada: Proceedings - IEEE International Conference on Robotics and Automation 
Resumen: Navigation in unknown dynamic environments still remains a major challenge in robotics. Whereas insects like the desert ant with very limited computing and memory capacities solve this task with great efficiency. Thus, the understanding of the underlying neural mechanisms of insect navigation can inform us on how to build simpler yet robust autonomous robots. Based on recent developments in insect neuroethology and cognitive psychology, we propose a method for landmark navigation in dynamic environments. Our method enables the navigator to learn the reliability of landmarks using an expectation reinforcement method. For that end, we implemented a real-time neuronal model based on the Distributed Adaptive Control framework. The results demonstrate that our model is capable of learning the stability of landmarks by reinforcing its expectations. Also, the proposed mechanism allows the navigator to optimally restore its confidence when its expectations are violated. We also perform navigational experiments with real ants to compare with the results of our model. The behavior of the proposed autonomous navigator closely resembles real ant navigational behavior. Moreover, our model explains navigation in dynamic environments as a memory consolidation process, harnessing expectations and their violations.
URI: http://hdl.handle.net/10553/48147
ISBN: 9781424450381
ISSN: 1050-4729
DOI: 10.1109/ROBOT.2010.5509935
Fuente: Proceedings - IEEE International Conference on Robotics and Automation[ISSN 1050-4729] (5509935), p. 3805-3812 (julio 2010)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

8
actualizado el 17-nov-2024

Visitas

24
actualizado el 15-abr-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.