Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48118
Título: Optimizing performance of non-expert users in brain-computer interaction by means of an adaptive performance engine
Autores/as: Ferreira, André
Vourvopoulos, Athanasios
Badia, Sergi Bermúdezi 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Brain-computer interfaces
Adaptive performance
Motor imagery
Fecha de publicación: 2015
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 8th International Conference on Brain Informatics and Health, (BIH 2015) 
Resumen: Brain–Computer Interfaces (BCIs) are become increasingly more available at reduced costs and are being incorporated into immersive virtual environments and video games for serious applications. Most research in BCIs focused on signal processing techniques and has neglected the interaction aspect of BCIs. This has created an imbalance between BCI classification performance and online control quality of the BCI interaction. This results in user fatigue and loss of interest over time. In the health domain, BCIs provide a new way to overcome motor-related disabilities, promoting functional and structural plasticity in the brain. In order to exploit the advantages of BCIs in neurorehabilitation we need to maximize not only the classification performance of such systems but also engagement and the sense of competence of the user. Therefore, we argue that the primary goal should not be for users to be trained to successfully use a BCI system but to adapt the BCI interaction to each user in order to maximize the level of control on their actions, whatever their performance level is. To achieve this, we developed the Adaptive Performance Engine (APE) and tested with data from 20 naïve BCI users. APE can provide user specific performance improvements up to approx. 20% and we compare it with previous methods. Finally, we contribute with an open motor-imagery datasets with 2400 trials from naïve users.
URI: http://hdl.handle.net/10553/48118
ISBN: 978-3-319-23343-7
ISSN: 0302-9743
DOI: 10.1007/978-3-319-23344-4_20
Fuente: Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science,v. 9250, p. 202-211
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

3
actualizado el 15-dic-2024

Visitas

45
actualizado el 29-abr-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.