Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47789
Título: | Advanced classification of remote sensing high resolution imagery. An application for the management of natural resources | Autores/as: | Ibarrola-Ulzurrun, Edurne Marcello, Javier Gonzalo Martin,Consuelo |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Remote sensing High resolution image Pansharpening Orthorectification OBIA |
Fecha de publicación: | 2018 | Editor/a: | 1860-949X | Publicación seriada: | Studies in Computational Intelligence | Resumen: | In the last decades, there has been a decline in ecosystems natural resources. The objective of the study is to develop advanced image processing techniques applied to high resolution remote sensing imagery for the ecosystem conservation. The study area is focused in three ecosystems from The Canary Islands, Teide National Park, Maspalomas Natural Reserve and Corralejo and Islote de Lobos Natural Park. Different pre-processing steps have been applied in order to acquire high quality imagery. After an extensive analysis and evaluation of pansharpening techniques, Weighted Wavelet 'à trous’ through Fractal Dimension Maps, in Teide and Maspalomas scenes, and Fast Intensity Hue Saturation, in Corralejo scene, are used, then, a RPC (Rational Polymodal Coefficients) model performs the orthorectification and finally, the atmospheric correction is carried out by the 6S algorithm. The final step is to generate marine and terrestrial thematic products using advanced classification techniques for the management of natural resources. Accurate thematic maps have already been obtained in Teide National Park. A comparative study of both pixel-based and object-based (OBIA) approaches was carried out, obtaining the most accurate thematic maps in both of them using Support Vector Machine classifier. | URI: | http://hdl.handle.net/10553/47789 | ISSN: | 1860-949X | DOI: | 10.1007/978-3-319-58965-7_1 | Fuente: | Studies in Computational Intelligence[ISSN 1860-949X],v. 718, p. 1-13 |
Colección: | Artículos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Visitas
58
actualizado el 26-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.