Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47612
Título: Supervised constrained optimization of bayesian nonlocal means filter with sigma preselection for despeckling SAR images
Autores/as: Gomez, Luis 
Munteanu, Cristian G.
Buemi, Maria E.
Jacobo-Berlles, Julio C.
Mejail, Marta E.
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Interactive Evolution
Quality Assessment
Adaptation
Fecha de publicación: 2013
Editor/a: 0196-2892
Publicación seriada: IEEE Transactions on Geoscience and Remote Sensing 
Resumen: Speckle reduction is an important problem in synthetic aperture radar (SAR) image analysis. Recent years have seen how Bayesian filters emerge as the natural extension of the nonlocal means filters, providing a general framework to deal with multiplicative (speckle) noise. In this paper, we present an easy-to-use software tool applying an evolutionary algorithm to optimize a Bayesian nonlocal means filter with sigma preselection for denoising SAR images. The desired result is a filtered image having a significative reduction in its variance but preserving the original mean value of the noisy image. A mixed-integer constrained optimization problem is stated and solved with the human intervention, where the user assists the evolutionary algorithm to reduce the noisy image variance under the restriction of keeping the mean value of the noisy SAR image within a predetermined interval of acceptance. We apply the methodology to a set of synthetic and real SAR speckle corrupted images. The results through the evaluation of objective global and local quality criteria show the excellent potential of the proposal.
URI: http://hdl.handle.net/10553/47612
ISSN: 0196-2892
DOI: 10.1109/TGRS.2013.2269866
Fuente: IEEE Transactions on Geoscience and Remote Sensing[ISSN 0196-2892],v. 51 (6555865), p. 4563-4575
Colección:Artículos
miniatura
Adobe PDF (492,26 kB)
Vista completa

Citas SCOPUSTM   

21
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

16
actualizado el 17-nov-2024

Visitas

25
actualizado el 28-may-2023

Descargas

14
actualizado el 28-may-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.