Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47612
Título: | Supervised constrained optimization of bayesian nonlocal means filter with sigma preselection for despeckling SAR images | Autores/as: | Gomez, Luis Munteanu, Cristian G. Buemi, Maria E. Jacobo-Berlles, Julio C. Mejail, Marta E. |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Interactive Evolution Quality Assessment Adaptation |
Fecha de publicación: | 2013 | Editor/a: | 0196-2892 | Publicación seriada: | IEEE Transactions on Geoscience and Remote Sensing | Resumen: | Speckle reduction is an important problem in synthetic aperture radar (SAR) image analysis. Recent years have seen how Bayesian filters emerge as the natural extension of the nonlocal means filters, providing a general framework to deal with multiplicative (speckle) noise. In this paper, we present an easy-to-use software tool applying an evolutionary algorithm to optimize a Bayesian nonlocal means filter with sigma preselection for denoising SAR images. The desired result is a filtered image having a significative reduction in its variance but preserving the original mean value of the noisy image. A mixed-integer constrained optimization problem is stated and solved with the human intervention, where the user assists the evolutionary algorithm to reduce the noisy image variance under the restriction of keeping the mean value of the noisy SAR image within a predetermined interval of acceptance. We apply the methodology to a set of synthetic and real SAR speckle corrupted images. The results through the evaluation of objective global and local quality criteria show the excellent potential of the proposal. | URI: | http://hdl.handle.net/10553/47612 | ISSN: | 0196-2892 | DOI: | 10.1109/TGRS.2013.2269866 | Fuente: | IEEE Transactions on Geoscience and Remote Sensing[ISSN 0196-2892],v. 51 (6555865), p. 4563-4575 |
Colección: | Artículos |
Citas SCOPUSTM
21
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
16
actualizado el 17-nov-2024
Visitas
25
actualizado el 28-may-2023
Descargas
14
actualizado el 28-may-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.