Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47455
Título: Regularization of diffusion tensor maps using a non-Gaussian markov random field approach
Autores/as: Marím-Fernández, Marcos
Alberola-López, Carlos
Ruiz-Alzola, Juan 
Westin, Carl Fredrik
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Tensor Magnetic Resonance Image
Gaussian Noise Model
Brain White Matter
Large Eigenvalue
Linear Component
Fecha de publicación: 2003
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 6th International Conference on Medical Image Computing and Computer-Assisted Intervention 
Resumen: In this paper we propose a novel non-Gaussian MRF for regularization of tensor fields for fiber tract enhancement. Two entities are considered in the model, namely, the linear component of the tensor, i.e., how much line-like the tensor is, and the angle of the eigenvector associated to the largest eigenvalue. A novel, to the best of the author's knowledge, angular density function has been proposed. Closed form expressions of the posterior densities are obtained. Some experiments are also presented for which color-coded images are visually meaningful. Finally, a quantitative measure of regularization is also calculated to validate the achieved results based on an averaged measure of entropy.
URI: http://hdl.handle.net/10553/47455
ISSN: 0302-9743
Fuente: Lecture Notes in Computer Science[ISSN 0302-9743],v. 2879, p. 92-100
Colección:Artículos
miniatura
Adobe PDF (289,5 kB)
Vista completa

Citas SCOPUSTM   

5
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

74
actualizado el 01-nov-2024

Descargas

39
actualizado el 01-nov-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.