Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47455
Título: | Regularization of diffusion tensor maps using a non-Gaussian markov random field approach | Autores/as: | Marím-Fernández, Marcos Alberola-López, Carlos Ruiz-Alzola, Juan Westin, Carl Fredrik |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Tensor Magnetic Resonance Image Gaussian Noise Model Brain White Matter Large Eigenvalue Linear Component |
Fecha de publicación: | 2003 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 6th International Conference on Medical Image Computing and Computer-Assisted Intervention | Resumen: | In this paper we propose a novel non-Gaussian MRF for regularization of tensor fields for fiber tract enhancement. Two entities are considered in the model, namely, the linear component of the tensor, i.e., how much line-like the tensor is, and the angle of the eigenvector associated to the largest eigenvalue. A novel, to the best of the author's knowledge, angular density function has been proposed. Closed form expressions of the posterior densities are obtained. Some experiments are also presented for which color-coded images are visually meaningful. Finally, a quantitative measure of regularization is also calculated to validate the achieved results based on an averaged measure of entropy. | URI: | http://hdl.handle.net/10553/47455 | ISSN: | 0302-9743 | Fuente: | Lecture Notes in Computer Science[ISSN 0302-9743],v. 2879, p. 92-100 |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 25-feb-2024
Visitas
74
actualizado el 01-nov-2024
Descargas
39
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.