Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47451
Título: | K-voronoi diagrams computing in arbitrary domains | Autores/as: | Cárdenes, Rubén Warfield, Simon K. Mewes, Andrea J.U. Ruiz-Alzola, Juan |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Biomedical imaging Image segmentation Biology computing Robustness Radiology, et al. |
Fecha de publicación: | 2003 | Publicación seriada: | IEEE International Conference on Image Processing | Conferencia: | Proceedings: 2003 International Conference on Image Processing, ICIP-2003 | Resumen: | We propose a novel algorithm to compute Voronoi diagrams of order k in arbitrary 2D and 3D domains. The algorithm is based on a fast ordered propagation distance transformation called occlusion points propagation geodesic distance transformation (OPPGDT) which is robust and linear in the domain size, and has higher accuracy than other geodesic distance transformations published before. Our approach has proved to have a computational complexity of order O(k.m) with m the domain size and k the order of the diagram. Voronoi diagrams have been extensively used in many areas and we show here that Voronoi diagrams computed in non convex domains, are extremely useful for the segmentation of medical images. We validated our algorithm with a set of 2D and 3D synthetic non convex domains, and with the segmentation of a medical dataset showing its robustness and performance. | URI: | http://hdl.handle.net/10553/47451 | ISBN: | 0-7803-7750-8 | Fuente: | IEEE International Conference on Image Processing,v. 2, p. 941-944 |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 01-dic-2024
Visitas
78
actualizado el 10-ago-2024
Descargas
198
actualizado el 10-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.