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Rub́en Ćardenes1,3, Simon K. Warfield2, Andrea J.U. Mewes2 and Juan Ruiz-Alzola3
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ABSTRACT

We propose a novel algorithm to compute Voronoi diagrams
of orderk in arbitrary 2D and 3D domains. The algorithm
is based on a fast ordered propagation distance transfor-
mation calledocclusion points propagation geodesic dis-
tance transformation(OPPGDT) which is robust and lin-
ear in the domain size, and has higher accuracy than other
geodesic distance transformations published before. Our
approach has proved to have a computational complexity
of order O(k.m) with m the domain size andk the order
of the diagram. Voronoi diagrams have been extensively
used in many areas and we show here that Voronoi dia-
grams computed in non convex domains, are extremely use-
ful for the segmentation of medical images. We validated
our algorithm with a set of 2D and 3D synthetic non convex
domains, and with the segmentation of a medical dataset
showing its robustness and performance.

1. INTRODUCTION

A Voronoi diagram is a subdivision of the space into regions
such that all the points of a region have the same closest ob-
ject site. Object sites will be the points from which we will
compute our diagrams. The Voronoi diagram and its vari-
ants (different metrics, higher dimensions, sites which are
segments or polygons instead of points, etc.) have been re-
discovered many times in literally dozens of fields, includ-
ing biology, crystallography, geology, metallurgy, meteo-
rology, mathematics, robotics, geography, and marketing.
Some good surveys of the types of Voronoi diagrams and
their applications in a variety of fields can be found in Ok-
abe et al. [1] and Aurenhammer et al. [2].

One of the many variants, is the Voronoi diagram of
orderk or k-Voronoi diagrams, which is a partition of the
space into regions such that all the points in a given region
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have the samek closest sites. Applications include image
segmentation [3], interpolation, rank order filtering, cluster-
ing, medial axis transform, mesh generation, route planning,
and curve and surface reconstruction [4]. One of them, con-
veying a high relevance for medical imaging, is shown in
section 4, with the segmentation of the knee cartilage de-
rived from a medical dataset.

In this paper we present a new algorithm to compute the
discretized representation of thek-Voronoi diagrams, called
the k-nearest-neighbor transform, with the addition that it
can be computed in any arbitrary 2D or 3D domain, con-
vex or non-convex. We will call to this variant geodesic
k-Voronoi diagrams, and geodesick-nearest-neighbor trans-
form to its discretized representation, which consist of com-
puting a subdivision of the space into regions such that each
point of the region has the samek closest object sites ac-
cording to a geodesic metric defined in arbitrary domains.
This algorithm can be considered the generalization to arbi-
trary domains of thek-nearest-neighbor transform proposed
by [5] for convex domains.

The Voronoi diagram is computed by first obtaining the
distances from the objects sites, using a distance transfor-
mation (DT). The distance transformation of a binary im-
age consisting of object and non object pixels, is the op-
eration that computes for every pixel, the distance to the
nearest object pixel. There are several implementations for
computing efficiently DT, most of them take advantage of
the fact that distances vary smoothly in the distance map,
so that it must be possible to deduce the value of the map
in one pixel from the values of the map around it. Thus
many DT algorithms are based on mask propagations like
in Rosenfeld [6] and Borgefors [7]. In the paper presented
by Verwer [8], a new approach is introduced, that consists
of propagating the objects in increasing order, from the ob-
jects itself ranked first to the rest of the image. With this
idea, several DT algorithms have been developed, for exam-
ple see Ragnemalm [9] and Cuisenaire [5]. The later pro-
posed a new approach in this context to compute geodesic
DT [10]. A geodesic DT is the operation that computes the
nearest distances to the objects for every pixel, constrained



to an arbitrary domain, i.e. computing the distances as the
shortest path length. Several geodesic DT algorithms have
been proposed before, as theBd-geodesic DT introduced
by [5], based on ordered propagation, but it is an approx-
imation of the geodesic version of the Euclidean DT. We
propose to use a novel geodesic DT also based on ordered
propagation, which is highly efficient and which uses a new
geodesic metric in order to obtain the shortest path length
more accurately than any other algorithm proposed before.
The key point is the detection of occlusion points in a do-
main from a selected point of view, figuring out the loca-
tion of obstacles, and starting a new propagation front from
there. Our geodesic DT is termedocclusion points propa-
gation geodesic DTand its details can be found in [11].

2. ORDER K GEODESIC VORONOI ALGORITHM

We will describe here the algorithm to compute geodesick-
Voronoi diagrams. For simplicity, we will describe the 2D
algorithm. The extension to 3D is straightforward. We start
from a set of objects sitesO, from which we want to com-
pute the Voronoi diagram, restricted to a generic domainM .

The order one Voronoi diagram, is computed generating
wavefronts or propagation fronts from every object siteOi

until all the domain has been filled. Every non-connected
object siteOi generates a single non-connected propaga-
tion front Pi that grows at the same rate, until they collide
with themselves or with the domain boundaries. Each of
the wavefronts will generate a unique Voronoi cell, which
is a region whose points have the same closest object site.
If two fronts (Pi andPj ) collide at pixelp, object sitesOi

andO j are equidistant, so a Voronoi cell border is gener-
ated atp and propagation frontsPi andPj do not need to be
propagated further at this point. We will refer to these set of
propagation fronts as level one propagation frontsP1

i .
In order to computek-Voronoi diagrams, withk > 1, we

propose a novel scheme of multi-level propagation, where
the ith propagation level computes the cells whose points
share the sameith closest object site. In this algorithm we
obtain thek-nearest neighbor transform which is the dis-
cretized representation of thek-Voronoi diagram. This rep-
resentation allows a direct identification of theith closest
object site in a given region. This is quite useful in some
applications as in [3] and [5], to identify thek nearest neigh-
bors from a given point in the image. To perform this multi-
level technique the propagation fronts at level one should
go on propagating after they collide. In this case, when two
fronts at level oneP1

i andP1
j collide at pixelp, a new prop-

agation level appears (level 2), and those propagation fronts
becomesP2

i and P2
j , at p, and continues propagating fur-

ther. The second and following propagation levels are then
a continuation of the propagation fronts at level one, and
they will fill the domain as many times as the order of the

Voronoi diagram.
In order to account for convex and non convex domains,

we compute the distances with a novel geodesic metric called
occlusion points geodesic metric, which is defined as the
shortest path between two points A and B in the domain,
such that the path is a chain of segments through the nearest
points that hides behind the obstacles or corners, (occlusion
points), see figure 1 and [11] for details. For this purpose,
for every pixel p in the domain, we store its coordinates
~p = (px, py), and at propagation levell , we store the co-
ordinates of the nearest occlusion point fromp: ~r l

ob j(~p) =
(xl

ob j(~p),yl
ob j(~p)) and the distance from this occlusion point

to the initial object site,dl
ob j(~p). When a new pixelp is

reached at distanced+1, from the propagation of a pixelq
at distanced, we calculate the new distance as follows:

dnew(~p) = distEuclidean(~p,~rob j(~q))+dob j(~q) (1)

the Euclidean distance fromp to the nearest occlusion point
from q (~rob j(~q)), plus the distance from that occlusion point
to the starting objectdob j(~q). Therefore the algorithm does
not propagate absolute distances; instead, it propagates the
occlusion point coordinates and the distance from this oc-
clusion point to the original object site from where the prop-
agation front started.

AB

occlusion points

Fig. 1. Occlusion points and geodesic path in a non convex
domain

The propagation fronts are implemented as two lists (list1,
list2), where every list element represents a pixel in a prop-
agation front, and consists of its coordinates, and the object
index from which it originally started.List1 stores pixels
belonging to the propagation front at distanced, and list2
stores pixels at distanced+1. The algorithm starts putting
the object pointsO in list1, and propagates the elements of
a list to the other iteratively until both lists are empty, i.e.
when no more pixels remain unreached in the domain.

In 2D we propagate using a neighborhood of size 8,N8,
and the 3D version is implemented using a neighborhood of
size 26,N26.

3. COMPUTATIONAL COMPLEXITY AND
MEMORY LOAD

The computational complexity derives from the number of
distance computations, assignations, and the number of com-
parisons made in the propagations. The propagation is only



executed once for every points in the domainM , for that
reason the number of distance calculations in this algorithm
is the domain size:m. There are a number of additional
distance computations corresponding to the collision of dif-
ferent propagation fronts, but they are in general negligi-
ble with respect tom. With respect to the number of com-
parisons made at every propagation, the algorithm needs
a minimum of 5 comparisons for every pixel propagation,
and could need a maximum of 6+ k comparisons at spe-
cial points, when two or more propagations fronts collide.
Thus, our algorithm has a computational complexity of or-
derO(m) for every propagation level, and the overall com-
putational complexity isO(m.k), for ak order Voronoi dia-
gram.

On the other hand the memory load is moderately high,
because the storage consist of 3.k.m values for the output,
the occlusion points, and distance to occlusion points, plus
4.m values for the domain mask and three auxiliar parame-
ters for every pixel. AddingN values for the prototypes, the
overall memory load is 3.k.m+4.m+N. In practice we use
the size of the bounding box of the domainM instead ofm,
that can be well managed by a single workstation.

number of pixels 22214 88856 355424

k=1 0.140 0.559 2.288
k=2 0.234 0.960 3.912
k=3 0.329 1.350 5.644
k=4 0.422 1.767 7.370

Table 1. Execution times in seconds for the 2D geodesic
Voronoi algorithm in three experiments carried out fork= 1
to k = 4

number of pixels 120 1035 8291 66040

k=1 0.011 0.065 0.487 3.909
k=2 0.013 0.084 0.645 5.680
k=3 0.018 0.110 0.845 7.138
k=4 0.038 0.146 1.043 8.813

Table 2. Execution times in seconds for the 3D geodesic
Voronoi algorithm in four experiments carried out fork = 1
to k = 4

4. RESULTS

We have tested the algorithm in a 2D synthetic non con-
vex domain, (see figure 2) with 22214 pixels and two up-
sampled domains, with domain sizes of 88856 pixels, and
355424 pixels. The 3D experiments have been carried out
with four domain sizes of 120, 1035, 8291 and 66040 vox-
els. Figure 2 shows a Voronoi diagram of order one and or-
der two, and the geodesic distance transformation restricted

(a) (b)

(c) (d)

Fig. 2. Order one Voronoi geodesic map (a), order two
geodesic Voronoi map (b), geodesic distance map coded in a
cyclic colormap (c), and geodesic distance map represented
in a grayscale map (d), all restricted to a synthetic domain

to the synthetic 2D domain from a set of 37 points.
Figure 3 displays two different segmentation results for

the cartilage in the knee joint achieved from a 3D MR dataset.
Figure 3 (b) has been carried out using a common kNN clas-
sifier, classifying every voxel according to the intensity level
of a set of selected training prototypes. In comparison to
this, figure 3 (d) shows the results after applying an addi-
tional channel to the classifier, by means of the geodesic
Voronoi diagram obtained from the location of the same
prototypes. The improvement of the segmentation using the
geodesic Voronoi diagram is clearly shown. We also show
in figure 4 a 3D model of the segmented cartilage.

In tables 1 and 2 the execution times for the 2D and 3D
experiments are shown respectively. The experiments have
been carried out using several domain sizes and different
values ofk. The times has been measured in a SUN-Ultra
10 with an Ultra-SPARC II 440 MHz processor and 512
MB RAM. Notice that the times increase linearly withm,
the number of points in the domain, and withk showing a
computational complexity ofO(m.k).

5. CONCLUSIONS

As far as we know, the method introduced here is the first
to compute high order geodesic Voronoi diagrams. The
method is based on an efficient geodesic DT, that makes



(a) (b)

(c) (d)

(e)

Fig. 3. Sagittal slice of a MRI acquisition of a human knee
(a), segmentation without Voronoi diagrams (b), geodesic
Voronoi diagram of order two (c), segmentation using
geodesic Voronoi diagrams (d) and geodesic distance map
coded in a cyclic colormap (e)

Fig. 4. 3D model of the segmented cartilage

use of the occlusion points geodesic metric and on multi-
ple levels ordered propagation to compute efficientlyk or-
der Voronoi diagrams. This algorithm is highly efficient
and has proved to have a computational complexity of or-
derO(m.k), as we show in tables 1 and 2. With this scheme
we can improve the performance of some applications com-
puting Voronoi diagrams in reduced domains and not in the
whole image, reducing the number of points of the diagram
and thus, reducing the execution times. We can also take ad-
vantage of the geometry of the domain, using our occlusion
points geodesic metric instead of the Euclidean metric.

We have also shown an application, such as the seg-
mentation of medical images, which is of high interest in
the medical image processing area. We are convinced that
our algorithm can also be applied to a wide variety of ar-
eas where Voronoi diagrams are of routine application and
where the search ofk nearest neighbors in a generic do-
main is required, improving dramatically the accuracy and
the performance.
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