Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47207
Título: Approximate inverse computation using Frobenius inner product
Autores/as: Montero, G. 
González, L. 
Florez, E. 
García, M. D.
Suárez Sarmiento, Antonio Félix 
Clasificación UNESCO: 12 Matemáticas
1206 Análisis numérico
Palabras clave: Non-symmetric linear systems
Preconditioning
Sparse approximate inverses
Fecha de publicación: 2002
Editor/a: 1070-5325
Publicación seriada: Numerical Linear Algebra with Applications 
Resumen: Parallel preconditioners are presented for the solution of general linear systems of equations. The computation of these preconditioners is achieved by orthogonal projections related to the Frobenius inner product. So, minM∈𝒮∥AM−I∥ F and matrix M0∈𝒮 corresponding to this minimum (𝒮 being any vectorial subspace of ℳ︁n(ℝ)) are explicitly computed using accumulative formulae in order to reduce computational cost when subspace 𝒮 is extended to another one containing it. Every step, the computation is carried out taking advantage of the previous one, what considerably reduces the amount of work. These general results are illustrated with the subspace of matrices M such that AM is symmetric. The main application is developed for the subspace of matrices with a given sparsity pattern which may be constructed iteratively by augmenting the set of non‐zero entries in each column. Finally, the effectiveness of the sparse preconditioners is illustrated with some numerical experiments.
URI: http://hdl.handle.net/10553/47207
ISSN: 1070-5325
DOI: 10.1002/nla.269
Fuente: Numerical Linear Algebra with Applications [ISSN 1070-5325], v. 9 (3), p. 239-247
Colección:Artículos
Vista completa

Citas SCOPUSTM   

13
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 24-nov-2024

Visitas

224
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.