Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47207
Campo DC Valoridioma
dc.contributor.authorMontero, G.en_US
dc.contributor.authorGonzález, L.en_US
dc.contributor.authorFlorez, E.en_US
dc.contributor.authorGarcía, M. D.en_US
dc.contributor.authorSuárez Sarmiento, Antonio Félixen_US
dc.contributor.otherMontero, Gustavo-
dc.contributor.otherGarcia, M. Dolores-
dc.contributor.otherGonzalez, Luis-
dc.contributor.otherSuarez, Antonio-
dc.date.accessioned2018-11-23T11:41:17Z-
dc.date.available2018-11-23T11:41:17Z-
dc.date.issued2002en_US
dc.identifier.issn1070-5325en_US
dc.identifier.urihttp://hdl.handle.net/10553/47207-
dc.description.abstractParallel preconditioners are presented for the solution of general linear systems of equations. The computation of these preconditioners is achieved by orthogonal projections related to the Frobenius inner product. So, minM∈𝒮∥AM−I∥ F and matrix M0∈𝒮 corresponding to this minimum (𝒮 being any vectorial subspace of ℳ︁n(ℝ)) are explicitly computed using accumulative formulae in order to reduce computational cost when subspace 𝒮 is extended to another one containing it. Every step, the computation is carried out taking advantage of the previous one, what considerably reduces the amount of work. These general results are illustrated with the subspace of matrices M such that AM is symmetric. The main application is developed for the subspace of matrices with a given sparsity pattern which may be constructed iteratively by augmenting the set of non‐zero entries in each column. Finally, the effectiveness of the sparse preconditioners is illustrated with some numerical experiments.en_US
dc.languageengen_US
dc.publisher1070-5325-
dc.relation.ispartofNumerical Linear Algebra with Applicationsen_US
dc.sourceNumerical Linear Algebra with Applications [ISSN 1070-5325], v. 9 (3), p. 239-247en_US
dc.subject12 Matemáticasen_US
dc.subject1206 Análisis numéricoen_US
dc.subject.otherNon-symmetric linear systemsen_US
dc.subject.otherPreconditioningen_US
dc.subject.otherSparse approximate inversesen_US
dc.titleApproximate inverse computation using Frobenius inner producten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/nla.269en_US
dc.identifier.scopus0142023217-
dc.identifier.isi000175243700004-
dc.identifier.isi000175243700004-
dcterms.isPartOfNumerical Linear Algebra With Applications-
dcterms.sourceNumerical Linear Algebra With Applications[ISSN 1070-5325],v. 9 (3), p. 239-247-
dc.contributor.authorscopusid56256002000-
dc.contributor.authorscopusid7202218949-
dc.contributor.authorscopusid6506781764-
dc.contributor.authorscopusid35403331600-
dc.contributor.authorscopusid56299010200-
dc.contributor.authorscopusid36814487500-
dc.identifier.eissn1099-1506-
dc.description.lastpage247en_US
dc.identifier.issue3-
dc.description.firstpage239en_US
dc.relation.volume9en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000175243700004-
dc.contributor.daisngid689363-
dc.contributor.daisngid1802854-
dc.contributor.daisngid15125894-
dc.contributor.daisngid51819-
dc.contributor.daisngid6636015-
dc.contributor.daisngid450897-
dc.contributor.daisngid5154886-
dc.identifier.investigatorRIDL-1011-2014-
dc.identifier.investigatorRIDL-2859-2014-
dc.identifier.investigatorRIDA-8307-2008-
dc.identifier.investigatorRIDL-2366-2014-
dc.identifier.externalWOS:000175243700004-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Montero, G-
dc.contributor.wosstandardWOS:Gonzalez, L-
dc.contributor.wosstandardWOS:Florez, E-
dc.contributor.wosstandardWOS:Garcia, MD-
dc.contributor.wosstandardWOS:Suarez, A-
dc.date.coverdateAbril 2002en_US
dc.identifier.ulpgcen_US
dc.description.jcr0,706
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-5641-442X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMontero García, Gustavo-
crisitem.author.fullNameGonzález Sánchez, Luis-
crisitem.author.fullNameFlorez Vázquez, Elizabet Margarita-
crisitem.author.fullNameSuárez Sarmiento, Antonio Félix-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.