Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46952
Título: Sclera Recognition - A Survey
Autores/as: Das, Abhijit
Pal, Umapada
Blumenstein, Michael
Ballester, Miguel Angel Ferrer 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Iris Recognition
Images
Tasom
Sclera Biometric
Sclera Recognition, et al.
Fecha de publicación: 2013
Publicación seriada: Proceedings - 2nd IAPR Asian Conference on Pattern Recognition, ACPR 2013
Conferencia: 2013 2nd IAPR Asian Conference on Pattern Recognition, ACPR 2013 
Resumen: This paper presents a survey on sclera-based biometric recognition. Among the various biometric methods, sclera is one of the novel and promising biometric techniques. The sclera, a white region of connective tissue and blood vessels, surrounds the iris. A survey of the techniques available in the area of sclera biometrics will be of great assistance to researchers, and hence a comprehensive effort is made in this article to discuss the advancements reported in this regard during the past few decades. As a limited number of publications are found in the literature, an attempt is made in this paper to increase awareness of this area so that the topic gains popularity and interest among researchers. In this survey, a brief introduction is given initially about the sclera biometric, which is subsequently followed by background concepts, various pre-processing techniques, feature extraction and finally classification techniques associated with the sclera biometric. Benchmarking databases are very important for any pattern recognition related research, so the databases related with this work is also discussed. Finally, our observations, future scope and existing difficulties, which are unsolved in sclera biometrics, are discussed. We hope that this survey will serve to focus more researcher attention towards the emerging sclera biometric.
URI: http://hdl.handle.net/10553/46952
DOI: 10.1109/ACPR.2013.168
Fuente: Proceedings - 2nd IAPR Asian Conference on Pattern Recognition, ACPR 2013 (6778464), p. 917-921
Colección:Actas de congresos
miniatura
Adobe PDF (378,68 kB)
Vista completa

Citas SCOPUSTM   

47
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

32
actualizado el 15-dic-2024

Visitas

51
actualizado el 14-oct-2023

Descargas

276
actualizado el 14-oct-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.