Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46810
Título: The HELICoiD Project: Parallel SVM for Brain Cancer Classification
Autores/as: Torti, Emanuele
Cividini, Camilla
Gatti, Alessandro
Danese, Giovanni
Leporati, Francesco
Fabelo, Himar 
Ortega, Samuel 
Callicò, Gustavo Marrero 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hyperspectral imaging
Support vector machines
Tumors
Surgery
Cancer
Fecha de publicación: 2017
Publicación seriada: 2017 Euromicro Conference On Digital System Design (Dsd)
Conferencia: 20th Euromicro Conference on Digital System Design, DSD 2017 
Resumen: This paper describes the challenge of real-time tumor tissue identification dealt with by the HypErspectraL Imaging Cancer Detection (HELICoiD) European project. This project was funded by the Research Executive Agency, through the Future and Emerging Technologies (FET-Open) programme, under the 7th Framework Programme of the European Union. It involved four universities, three industrial partners and two hospitals. In this paper, we focused on the activity performed by the University of Las Palmas de Gran Canaria, in collaboration with the University of Pavia, concerning the parallel implementation of Support Vector Machine (SVM) classification for tumor tissue identification during surgery. Obtained results show that this classification is real-time compliant when performed using Graphic Processing Units (GPUs).
URI: http://hdl.handle.net/10553/46810
ISBN: 9781538621455
DOI: 10.1109/DSD.2017.33
Fuente: Proceedings - 20th Euromicro Conference on Digital System Design, DSD 2017 (8049823), p. 445-450
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.